

You Choose, We Do It **St. JOSEPH'S COLLEGE OF ENGINEERING** (An Autonomous Institution) **St. Joseph's Group of Institutions** Jeppiaar Educational Trust OMR, Chennai - 119.

At

FACULTY OF ELECTRICAL ENGINEERING

REGULATIONS – 2021 (CURRICULUM & SYLLABUS)

M.E. POWER ELECTRONICS AND DRIVES (Choice Based Credit System-CBCS)

I–IV Semesters

Vision of the department

➤ To promote the Department of Electrical and Electronics Engineering as a pioneer in education and research by imparting quality education, creating and upgrading the academic facilities and inculcating professional values to the students to face the challenges in the dynamic global society.

Mission of the department

- > To attain utmost qualities of teaching-learning process and provide a vibrant environment for the students to exhibit their fullest potential in the field of Electrical and Electronics Engineering.
- To improve research and development skills among students towards providing technical solutions with ethical values to meet social challenges.
- > To develop the students to face the technological requirements of the industry with professional values and make them employable and to impart the spirit of entrepreneurship for their successful career.

Program Education Objectives (PEOs)

PEO1: Graduates of this program will have technical knowledge with the ability to design, develop and test power electronic converters and incorporate them in the control of electric drives in real time applications.

PEO2: Graduates of this program will be equipped skillfully to carry out academic and industrial research with cutting edge technologies thereby providing appropriate solutions with insightful innovations.

PEO3: Graduates of this program will show strong aptitude towards continuous learning and exhibit exemplary determination towards being a part of academia and exhibit higher order of ethical responsibility.

PEO4: Graduates of this program will show involvement and willingness in assuming responsibility in societal and environmental causes to promote sustainable growth in satisfying energy needs.

Program Specific Outcomes (PSOs)

PSO1: Understand and analyze the need for different modern power electronic converters and implement them for the operation of real time adjustable speed drives for flexible control.

PSO2: Contribute towards effective utilization of renewable energy sources by enabling the harness of maximum power with the help of power electronic conversion topologies.

PSO3: Design robust controllers for efficient energy storage and consumption by real time control of energy storage devices.

PSO4: Enhance knowledge by formulating and carrying out experiments to promote active research in the field of power electronics and drives, in order to improve the performance of electrical power systems.

Program Outcomes (POs)

PO1 – Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2 – Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 – Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4 – Conduct investigations of complex problems: Use research–based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5 – Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6 – The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7 – Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 – Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 – Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 – Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11 – Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 – Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change

PEO / PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO	7	PO8	D	09	PO	10	PO	1 1	PO	10
DEO 1	*	*	*	*	*	*		/ *	*		<u> </u>	FU	10	FU	11		1 Z
PEO-1	*	*	*	*	*	*		*	*		*				*		*
PEO-2	*	*	*	*	*	*		*	*		*				~		*
PEO-3			*														*
PEO-4	*	*			*	*	ć	k	*								
			PPING	– PG –	T GRAI M.E. P		ELE		RONI		ND		1				
SEME	STER		OF THI	E SUBJI	ECT	a	b	С	d	е	f	g	h	i	j	k	1
		THEO						r —	- 1	1	1	1	1	r	1	1	1
		Applie Electr	ical Eng			sr *	*	*	*								
		Power		semicor	nductor	*	*			*	*						
		Device							_								
		Machi			Electric	~	*	*	*	*	*						
SE	MI	Analys Conve		Design	of Pow	er *	*	*		*	*						
		Syster	n Theor	ry		*	*		*	*	*						
			rch M		logy ar	nd			*	*	*		*	*	*	*	*
		Audit	Course														
		PRAC	TICALS	5									1		1	1	1
		Power Simul	Elec ation La	tronics aborato		it *	*			*				*			
					borator	y *	*			*				*			
		THEO	RY														
		Analys Invert		nd De	esign	of *	*	*	*	*	*						
		Analy	sis of E	lectrica	1 Drives	*	*			*	*						
		Electr	ic Vehi	icles ar	nd pow	er 🗼	*	*		*	*						
		mana	gement														
SEI	M II	Embe	dded Co	ontrolle	rs	*	*	*	*	*	*						
		Profes	sional l	Elective	e I												
		Profes	sional l	Elective	e II												
		PRAC	TICALS	5													
		Embe	dded Co	ontrolle	rs	*			*	*				*			
		Labor															
			Project			*					*		*	*	*	*	*
		THEO					_	L			-			-	1	1	r
			sional l														
			sional l		e IV												
SEN	Л III	-	Elective														
			TICALS														
					oratory		*			*				*			
		Projec	t Work	– Phase	e I	*	*	*	*	*	*	*	*	*	*	*	*
SEN	AI IV	Projec	t Work	– Phase	e II	*	*	*	*	*	*	*	*	*	*	*	*

M.E. POWER ELECTRONICS AND DRIVES REGULATIONS – 2020 CHOICE BASED CREDIT SYSTEM I TO IV SEMESTERS CURRICULA & SYLLABI

SEMESTER – I

S.No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THEO	DRY							
1.	MA1153	Applied Mathematics for Electrical Engineers	FC	4	4	0	0	4
2.	PE1101	Power Semiconductor Devices	PCC	3	3	0	0	3
3.	PE1102	Analysis of Electrical Machines	PCC	3	3	0	0	3
4.	PE1103	Analysis and Design of Power Converters	PCC	3	3	0	0	3
5.	PE1104	System Theory	PCC	4	3	1	0	4
6.	RM1101	Research Methodology and IPR	RMC	2	2	0	0	2
	(One from	Audit course the list of Audit Course)	AC					
PRAC	TICALS							
7.	PE1111	Power Electronics Circuit Simulation Laboratory	PCC	4	0	0	4	2
8.	PE1112	Power Converters Laboratory	PCC	4	0	0	4	2
			TOTAL	27	18	1	8	23

SEMESTER – II

S.No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THEO	RY							
1.	PE1201	Analysis and Design of Inverters	PCC	3	3	0	0	3
2.	PE1202	Analysis of Electrical Drives	PCC	4	3	1	0	4
3.	PE1203	Electric Vehicle and Power Management	PCC	3	3	0	0	3
4.	PE1204	Embedded Controllers	PCC	3	3	0	0	3
5.		Professional Elective I	PEC	3	3	0	0	3
6.		Professional Elective II	PEC	3	3	0	0	3
PRAC	TICALS							
7.	PE1211	Embedded Controllers Laboratory	PCC	4	0	0	4	2
8.	PE1212	Mini Project	EEC	4	0	0	4	2
			TOTAL	27	18	1	8	23

SEMESTER – III

S.No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THEO	RY		-					
1.		Professional Elective III	PEC	3	3	0	0	3
2.		Professional Elective IV	PEC	3	3	0	0	3
3.		Open Elective (One from list of 6 courses)	OEC	3	3	0	0	3
PRAC'	TICALS			•				
4	PE1311	Electrical Drives Laboratory	PCC	4	0	0	4	2
5.	PE1312	Project Work – Phase I	EEC	12	0	0	12	6
		25	9	0	16	17		
	Career Competency Development I – BEC Training					1	1 W	EEK

SEMESTER – IV

S.No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С				
PRACT	PRACTICALS											
1.	PE1411	Project Work – Phase II	EEC	24	0	0	24	12				
			TOTAL	24	0	0	24	12				

TOTAL NO. OF CREDITS: 75

CATEGORIZATION OF COURSES

FOUNDATION COURSES (FC)

SI. No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1.	MA1153	Applied Mathematics for Electrical Engineers	FC	4	4	0	0	4

RESEARCH METHODOLOGY AND IPR COURSES (RMC)

SI. No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1.	RM1101	Research Methodology and IPR	RMC	2	2	0	0	2

PROFESSIONAL CORE COURSE (PCC)

S.No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	P	С
1.	PE1101	Power Semiconductor Devices	PCC	3	3	0	0	3
2.	PE1102	Analysis of Electrical Machines	PCC	3	3	0	0	3
3.	PE1103	Analysis and Design of Power Converters	PCC	3	3	0	0	3
4.	PE1104	System Theory	PCC	4	3	1	0	4
5.	PE1111	Power Electronics Circuit Simulation Laboratory	PCC	4	0	0	4	2
6.	PE1112	Power Converters Laboratory	PCC	4	0	0	4	2
7.	PE1201	Analysis and Design of Inverters	PCC	3	3	0	0	3
8.	PE1202	Analysis of Electrical Drives	PCC	4	3	1	0	4
9.	PE1203	Electric Vehicle and Power Management	PCC	3	3	0	0	3
10.	PE1204	Embedded Controllers	PCC	3	3	0	0	3
11.	PE1211	Embedded Controllers Laboratory	PCC	4	0	0	4	2
12.	PE1311	Electrical Drives Laboratory	PCC	4	0	0	4	2

PROFESSIONAL ELECTIVE COURSE (PEC)

Se	mester I	I		Elect	ive I	and	II	
S.No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1.	PE1251	Artificial Intelligence and Machine Learning	PEC	3	3	0	0	3
2.	PE1252	Electromagnetic Field Computation and Modelling	PEC	3	3	0	0	3
3.	PE1253	Control System Design for Power Electronics	PEC	3	3	0	0	3
4.	PE1254	Analog and Digital Controllers	PEC	3	3	0	0	3
5.	PE1255	Flexible AC Transmission Systems	PEC	3	3	0	0	3

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119 (An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

S.No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
6.	PE1256	Modern Rectifiers and Resonant Converters	PEC	3	3	0	0	3
7.	PE1257	Electromagnetic Interference and Compatibility	PEC	3	3	0	0	3
8.	PE1258	MEMS Technology	PEC	3	3	0	0	3
9.	PE1259	Distributed Generation and Microgrid	PEC	3	3	0	0	3

Semester III

Elective III and IV

S.No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1.	PE1351	High Voltage Direct Current Transmission	PEC	3	3	0	0	3
2.	PE1352	Solar and Energy Storage Systems	PEC	3	3	0	0	3
3.	PE1353	Wind Energy Conversion Systems	PEC	3	3	0	0	3
4.	PE1354	Energy Management and Auditing	PEC	3	3	0	0	3
5.	PE1355	Non – Linear Dynamics for Power Electronics Circuit	PEC	3	3	0	0	3
6.	PE1356	Smart Grid	PEC	3	3	0	0	3
7.	PE1357	Power Electronics for Renewable Energy Systems	PEC	3	3	0	0	3
8.	PE1358	Robotics and Control	PEC	3	3	0	0	3
9.	PE1359	Non – Linear Control	PEC	3	3	0	0	3

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

S.No	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1.	PE1212	Mini Project	EEC	4	0	0	4	2
2.	PE1312	Project Work – Phase I	EEC	12	0	0	12	6
3.	PE1411	Project Work – Phase II	EEC	24	0	0	24	12

OPEN ELECTIVE COURSES [OEC] (Out of 5 Courses one Course must be selected)

•					•		
S. NO	COURSE		PERIC	ODS PER	WEEK		
0.10	CODE	COURSE TITLE	Lecture	Tutorial	Practical	CREDITS	SEMESTER
1.	OCP 101	Business Data Analytics	3	0	0	3	
2.	OMF 101	Industrial Safety	3	0	0	3	
3.	OMB 103	Cost Management of Engineering Projects	3	0	0	3	3
4.	OMF 102	Composite Materials	3	0	0	3	
5.	OCH 105	Waste to Energy	3	0	0	3	

AUDIT COURSES (AC)

Registration for any of these courses is optional to students

S.NO	COURSE		PER	IODS PER	WEEK		
	CODE	COURSE TITLE	Lecture	Tutorial	Practical	CREDITS	SEMESTER
1.	AX1001	English for Research Paper Writing	2	0	0	0	
2.	AX1002	Disaster Management	2	0	0	0	
3.	AX1003	Sanskrit for Technical Knowledge	2	0	0	0	1/2
4.	AX1004	Value Education	2	0	0	0	
5.	AX1005	Constitution of India	2	0	0	0	
6.	AX1006	Pedagogy Studies	2	0	0	0	
7.	AX1007	Stress Management by Yoga	2	0	0	0	
8.	AX1008	Personality Development Through Life Enlightenment Skills	2	0	0	0	
		Total Cre	dits			0	

SUMMARY

	M.E PO	WER	ELECTF	RONICS	AND DR	IVES	
S. NO.	SUBJECT	CRE	DITS P	ER SEM	TOTAL	%	
5 . NO.	AREA	Ι	II	III	IV	CREDITS	/0
1.	FC	4	0	0	0	04	5.33
2.	PCC	17	15	2	0	34	45.33
3.	PEC	0	6	6	0	12	16.00
4.	RMC	2	0	0	0	2	2.67
5.	OEC	0	0	3	0	3	4
6.	EEC	0	2	6	12	20	26.33
7.	Non–Credit / Audit Course	0	0	0	0	0	0.00
	Total Credits	23	23	17	12	75	100

SEMESTER – I

MA1153	APPLIED MATHEMATICS FOR ELECTRICAL ENGINEERS	L	Т	Ρ	С
		4	0	0	4
Objectives					
 The ma mathem thinking To form real life This con problem 	in objective of this course is to demonstrate various analyticatics and extensive experience with the tactics of problem applicable for the students of electrical engineering. ulate and construct a mathematical model for a linear prograsituation. urse also will help the students to identify, formulate, and is in electrical engineering using mathematical tools for a linear, including matrix theory, calculus of variation series.	solv amm abstr rom	ving ning ract, a	and l probl and varie	lem ir solve
UNIT – I	MATRIX THEORY				12
Cholesky de	ecomposition – Generalized Eigenvectors – Canonical basis – es method – Singular value decomposition.	QR	Fact	toriza	
UNIT – II	CALCULUS OF VARIATIONS				12
Concept Of	variation and its properties - Euler's equation - Functional	dep	enda	ant o	
and higher variables –	variation and its properties – Euler's equation – Functional order derivatives – Functionals dependant on functions of s Variational problems with moving boundaries – Isoperimetri itz and Kantorovich methods.	ever	al in	depe	n firs nden
and higher variables – methods: R	order derivatives – Functionals dependant on functions of s Variational problems with moving boundaries – Isoperimetri itz and Kantorovich methods.	ever	al in	depe	n firs nden Direc
and higher variables – methods: R UNIT – III Probability variables – properties	order derivatives – Functionals dependant on functions of s Variational problems with moving boundaries – Isoperimetri	ever c pro theo	rem	depe ms – – Ra and	n firs nden Direc 12 ndom thei
and higher variables – methods: R UNIT – III Probability variables – properties distribution	order derivatives – Functionals dependant on functions of s Variational problems with moving boundaries – Isoperimetri itz and Kantorovich methods. PROBABILITY AND RANDOM VARIABLES – Axioms of probability – Conditional probability – Baye's t Probability function – Moments – Moment generating f – Binomial, Poisson, Geometric, Uniform, Exponential, Ga s – Function of a random variable.	ever c pro theo	rem	depe ms – – Ra and	n first ndent Direc 12 ndom theit orma
and higher variables – methods: R UNIT – III Probability variables – properties distribution UNIT – IV Formulation	order derivatives – Functionals dependant on functions of s Variational problems with moving boundaries – Isoperimetri itz and Kantorovich methods. PROBABILITY AND RANDOM VARIABLES – Axioms of probability – Conditional probability – Baye's t Probability function – Moments – Moment generating f – Binomial, Poisson, Geometric, Uniform, Exponential, Ga	ever c pro theo unct	rem tions	depe ms – – Ra and N	n firs nden Direc 12 ndom thei orma
and higher variables – methods: R UNIT – III Probability variables – properties distribution UNIT – IV Formulation Transportat	order derivatives – Functionals dependant on functions of s Variational problems with moving boundaries – Isoperimetri itz and Kantorovich methods. PROBABILITY AND RANDOM VARIABLES – Axioms of probability – Conditional probability – Baye's t Probability function – Moments – Moment generating f – Binomial, Poisson, Geometric, Uniform, Exponential, Ga s – Function of a random variable. LINEAR PROGRAMMING n – Graphical solution – Simplex method – Big M method – The tion and Assignment models.	ever c pro theo unct	rem tions	depe ms – – Ra and N	n firs nden Direc 12 ndon thei orma 12 :hod -
and higher variables – methods: R UNIT – III Probability variables – properties distribution UNIT – IV Formulation Transportat UNIT – V Fourier trig Even and o intervals – spectrum –	order derivatives – Functionals dependant on functions of s Variational problems with moving boundaries – Isoperimetri itz and Kantorovich methods. PROBABILITY AND RANDOM VARIABLES – Axioms of probability – Conditional probability – Baye's t Probability function – Moments – Moment generating f – Binomial, Poisson, Geometric, Uniform, Exponential, Ga s – Function of a random variable. LINEAR PROGRAMMING n – Graphical solution – Simplex method – Big M method – Th	ever c pro theo funct amm wo p erge Extense	al in obler rem tions ha ar ohase ence ensic em a	depe ms – – Ra and N e met of se on to and j	n firs nden Direc 12 ndon thei orma 12 chod - 12 chod -
and higher variables – methods: R UNIT – III Probability variables – properties distribution UNIT – IV Formulation Transportat UNIT – V Fourier trig Even and o intervals – spectrum –	order derivatives – Functionals dependant on functions of s Variational problems with moving boundaries – Isoperimetri itz and Kantorovich methods. PROBABILITY AND RANDOM VARIABLES – Axioms of probability – Conditional probability – Baye's t Probability function – Moments – Moment generating f – Binomial, Poisson, Geometric, Uniform, Exponential, Ga s – Function of a random variable. LINEAR PROGRAMMING n – Graphical solution – Simplex method – Big M method – Tw tion and Assignment models. FOURIER SERIES onometric series: Periodic function as power signals – Conv dd function: Cosine and sine series – Non periodic function: Power signals: Exponential Fourier series – Parseval's th Eigen value problems and orthogonal functions – Regula	ever c pro theo unct amm wo p erge Exto neore r St	rem tions ha a ohase ence ensic em a urm	depe ms – Ra and N e met of se on to and – Lio	n firs nden Direc 12 ndon thei orma 12 chod -

- 1. L. C. Andrews and R. L. Phillips, 'Mathematical Techniques for Engineers and Scientists', Prentice Hall of India Pvt. Ltd., New Delhi, 2005.
- 2. R. Bronson, 'Matrix Operation', Schaum's outline series, 2nd Edition, McGraw Hill, 2011.
- 3. Isarel M. Gelfand and S.V. Fomin, 'Calculus of Variations', Dover Publication Inc, 2012.
- 4. R. A. Johnson, I. Miller, and J. Freund, 'Miller and Freund's Probability and Statistics for Engineers', Pearson Education, Asia, 8th Edition, 2015.
- 5. P. V. O'Neil, 'Advanced Engineering Mathematics', Thomson Asia Pvt. Ltd., 8th Edition, Singapore, 2017.
- 6. Hamdy A Taha, 'Introduction to Operations Research', Prentice Hall India, Tenth Edition, Third Indian Reprint 2019.

Course	e Outcomes (CO)
CO1	Apply various methods in matrix theory to solve system of linear equations.
CO2	Maximizing and minimizing the functional that occurs in electrical engineering disciplines.
CO3	Computation of probability and moments, standard distributions of discrete and continuous random variables and functions of a random variable.
CO4	Could develop a fundamental understanding of linear programming models, able to develop a linear programming model from problem description, apply the simplex method for solving linear programming problems.
CO5	Fourier series analysis and its uses in representing the power signals. Able to expand the periodic and non-periodic as a power signals and Regular Sturm – Liouville systems, Generalized form of Fourier series.

Course		Program Outcomes													PSO				
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4			
CO1	3	3	3	2	2	2	1	1	1	2	2	2	3	3	3	2			
CO2	3	2	2	2	1	2	1	1	1	1	1	2	3	3	3	1			
CO3	2	3	2	3	2	1	1	1	1	2	1	2	3	3	3	2			
CO4	3	2	2	3	3	2	2	1	1	2	2	3	3	3	3	2			
C05	3	2	3	3	2	2	2	1	2	2	2	2	3	3	3	1			

С

Ρ

L

Т

POWER SEMICONDUCTOR DEVICES

PE1101

	3 0 0	3
Objectives		
To improve	power semiconductor device structures for adjustable speed motor cont	trol
applications		
	and the static and dynamic characteristics of current controlled pow	wer
semiconduc		
	and the static and dynamic characteristics of voltage–controlled pov	wer
semiconduc		
	the students for the selection of devices for different power electror	nics
applications		
 To understa 	ind the control and firing circuit for different devices.	
UNIT – I	INTRODUCTION	9
	g devices overview - Attributes of an ideal switch, application requirement	nts,
	; Power handling capability - (SOA); Device selection strategy - On-state a	-
switching losse	es - EMI due to switching - Power diodes - Types, forward and reve	erse
characteristics,	switching characteristics - rating.	
UNIT – II	CURRENT CONTROLLED DEVICES	9
BJT's - Constru	ction, static characteristics, switching characteristics; negative temperat	ure
	second breakdown; Thyristors - Physical and electrical principle underly	
	de, two transistor analogy - Concept of latching; Gate and switch	-
-	converter grade and inverter grade and other types; series and para	
•	parison of BJT and Thyristor - Steady state and dynamic models of BJT	Γ&
Invristor - Basi	cs of GTO, MCT, FCT, RCT.	
UNIT – III	VOLTAGE CONTROLLED DEVICES	9
	Is and IGBTs - Principle of voltage - Controlled devices, construction, typ	
	ching characteristics, steady state and dynamic models of MOSFETs and IG	-
	New semiconductor materials for devices - Intelligent power module	
	commutated thyristor (IGCT) - Comparison of all power devices.	
UNIT – IV	FIRING AND PROTECTING CIRCUITS	9
Necessity of ise	olation, pulse transformer, optocoupler - Gate driver circuit - SCR, MOSF	ET,
IGBTs and base	e driving for power BJT - Over voltage, over current and gate protectic	ons;
Design of snubl	pers.	

UNIT – V THERMAL PROTECTION

Heat transfer – conduction, convection and radiation; Cooling - liquid cooling, vapour - phase cooling; Guidance for heat sink selection - Thermal resistance and impedance - Electrical analogy of thermal components, heat sink types and design - Mounting types - Switching loss calculation for power device.

Total Periods: 45

9

Text Books:

- 1. B. W. Williams, 'Power Electronics Circuit Devices and Applications'. McGraw Hill Higher Education; 2nd edition, 1992.
- 2. M. H. Rashid, 'Power Electronics Circuits, Devices and Applications', Prentice Hall India, Third Edition, New Delhi, 2004.

- 1. MD Singh and K.B. Khanchandani, 'Power Electronics', Tata McGraw Hill, 2001.
- 2. Mohan, Undeland and Robins, 'Power Electronics Concepts, applications and Design, John Wiley and Sons, Singapore, 2000.
- 3. Joseph Vithayathil, Power Electronics: Principles and Applications, Delhi, Tata McGraw– Hill, 2010.

Course	e Outcomes (CO)
CO1	Able to understand and analyse different types of power semiconductor devices and
	their switching characteristics.
CO2	Able to understand and analyse different current controlled semiconductor devices
	and their switching characteristics.
CO3	Able to understand and analyse different voltage-controlled semiconductor devices
	and their switching characteristics.
CO4	Design and analyse the Firing and Protecting Circuits For various semiconductor
	devices
CO5	Design and analyse the cooling and thermal control of semiconductor devices

Course		Program Outcomes													PSO				
Outcomes	а	b	С	d	е	f	g	h	i	j	k	-	1	2	3	4			
CO1	3	3	2	2	2	1	2	1	1	1	2	3	3	3	3	2			
CO2	3	3	2	2	2	1	1	1	1	1	1	3	3	3	3	1			
CO3	3	3	2	2	2	1	1	1	1	1	1	3	3	3	3	2			
CO4	3	3	3	3	2	1	2	1	1	1	2	3	3	3	3	2			
C05	3	3	3	3	2	1	2	1	1	1	2	3	3	3	3	1			

PE1102	ANALYSIS OF ELECTRICAL MACHINES	L	Т	Ρ	С
		3	0	0	3

Objectives

- To provide knowledge about the fundamentals of magnetic circuits, energy, force and torque of multi-excited systems.
- To analyze the steady state and dynamic state operation of DC machine through mathematical modelling and simulation in digital computer.
- To provide the knowledge of theory of transformation of three phase variables to two phase variables.
- To analyze the steady state and dynamic state operation of three-phase induction machines using transformation theory based mathematical modeling and digital computer simulation.
- To analyze the steady state and dynamic state operation of three– phase synchronous machines using transformation theory based mathematical modeling and digital computer simulation.

UNIT – I

PRINCIPLES OF ELECTROMAGNETICENERGY CONVERSION

Magnetic circuits, Permanent magnet, Stored magnetic energy, Co–energy – Force and torque in singly and doubly excited systems – Machine windings and air gap MMF – Winding inductances and voltage equations

UNIT – II DC MACHINES

Elementary DC machine and analysis of steady state operation – Voltage and torque equations dynamic characteristics of permanent magnet and shunt D.C. motors – Time domain block diagrams – Solution of dynamic characteristic by Laplace transformation – Digital computer simulation of permanent magnet and shunt D.C. Machines

UNIT – III REFERENCE FRAME THEORY

Historical background – Phase transformation and Commutator transformation – Transformation of variables from stationary to arbitrary reference frame – Variables observed from several frames of reference.

UNIT – IV INDUCTION MACHINES

Three phase induction machine, equivalent circuit and analysis of steady state operation – Free acceleration characteristics – Voltage and torque equations in machine variables and arbitrary reference frame variables – Analysis of dynamic performance for load torque variations – Digital computer simulation.

9

9

9

9

UNIT – V SYNCHRONOUS MACHINES

Three phase synchronous machine and analysis of steady state operation – Voltage and torque equations in machine variables and rotor reference frame variables (Park's equations) – Analysis of dynamic performance for load torque variations – Generalized theory of rotating electrical machine and Kron's primitive machine.

Total Periods: 45

9

Text Books:

1. Paul C. Krause, Oleg Wasyzczuk, Scott S, Sudhoff, 'Analysis of Electric Machinery and Drive Systems', John Wiley, Second Edition, 2010.

- 1. P S Bimbhra, 'Generalized Theory of Electrical Machines', Khanna Publishers, 2008.
- 2. A.E, Fitzgerald, Charles Kingsley, Jr, and Stephan D, Umanx, 'Electric Machinery', Tata McGraw Hill, 5th Edition, 1992.
- 3. R. Krishnan, 'Electric Motor & Drives: Modelling, Analysis and Control', New Delhi, Prentice Hall of India, 2001.

Course	e Outcomes (CO)
CO1	Ability to understand the various electrical parameters in mathematical form.
CO2	Ability to find the electrical machine equivalent circuit parameters and modelling of
	DC machine.
CO3	Ability to understand the different types of reference frame theories and
	transformation relationships.
CO4	Ability to find the electrical machine equivalent circuit parameters and modeling of
	Induction machine.
CO5	Ability to find the electrical machine equivalent circuit parameters and modeling of
	Synchronous machine.

Course					PSO											
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4
CO1	3	3	3	3	1	1	1	1	1	2	1	2	3	2	3	1
CO2	3	3	2	3	3	1	1	1	1	2	1	2	3	3	3	1
CO3	3	3	3	2	3	2	1	2	2	2	1	2	3	3	3	1
CO4	3	3	3	3	2	2	1	2	2	2	2	2	3	2	3	2
C05	3	3	3	2	3	2	1	1	2	2	2	2	3	3	3	2

(An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

PE1103	ANALYSIS AND DESIGN OF POWER CONVERTERS	L	Τ	Ρ	C
		3	0	0	3
OBJECTIVES					
	and and analyse the operation, characteristics of controlled rect				
	itching techniques and basic topologies of DC–DC switching reg				
	e power converter components and to design the power conve	rters	.		
	an in-depth knowledge about resonant converters.				
To comprel	nend the concepts of AC-AC power converters and their applica	tion	5.		
UNIT – I	SINGLE PHASE & THREE PHASE CONVERTERS			<u> </u>	9
	nase-controlled converter operation – Single phase full conv				
	, RLE load), single phase dual converter, Three phase	•			
	d semi–converter (RL, RLE load); Reactive power ;	Pov	ver	fac	tor
improvement	echniques ; PWM rectifiers.				
					<u> </u>
UNIT – II	DC–DC CONVERTERS				9
	inear power supplies; switched mode power conversion; Non-				
converters -	operation and analysis of Buck, Boost, Buck–Boost, Cuk &	۶ SE	EPIC	un	der
continuous an	d discontinuous operation, Isolated converters- basic operat	ion	of F	lyba	ıck,
Forward and P	ush–pull topologies.				
UNIT – III	DESIGN OF POWER CONVERTER COMPONENTS				9
Introduction t	o magnetic materials – hard and soft magnetic materials-t	ype	s of	cor	·es,
copper wir	dings; Design of transformer; Inductor desigr	۱	equ	atio	ns;
Inductor desig	n for buck/ boost/ fly–back converter; Selection of output fi	lter	сара	acito	ors;
Selection of ra	tings for devices; Input filter design.				
UNIT – IV	RESONANT DC-DC CONVERTERS				9
Switching loss	, hard switching, and basic principles of soft switching, C	lassi	ficat	tion	of
resonant conv	verters – Load resonant converters, Series and parallel; Re	eson	ant	swi	tch
converters; Op	eration and analysis of ZVS, ZCS converters, comparison of ZC	s/zv	'S, Z'	VT/Z	ZCT
PWM converte	ers.				
UNIT – V	AC–AC CONVERTERS				9
Principle of on	-off and phase angle control, Single phase ac voltage controller	– Ar	nalys	sis w	/ith
R & RL load, 1	hree phase ac voltage controller, Principle of operation of cy	clo d	conv	erte	r –
Single phase a	nd three phase cyclo converters, Single phase matrix conver	rters	and	1 th	ree
phase matrix c	onverters.				
	Total Pe	erio	ds:	4	5

Text Books:

- 1. M. H. Rashid, 'Power Electronics Circuits, Devices and Applications', Prentice Hall India, Third Edition, New Delhi, 2017.
- 2. P. C. Sen, 'Modern Power Electronics', Wheeler Publishing Co, First Edition, New Delhi, 2005.
- 3. P. S. Bimbra, 'Power Electronics', Khanna Publishers, Eleventh Edition, 2018.

Reference Books:

- 1. Ned Mohan, T. M. Undeland and W.P Robbin, 'Power Electronics: converters, Application and design' John Wiley and sons. Wiley India edition, 2007.
- 2. P. Simon Ang, Alejandro Oliva, 'Power–Switching Converters, Second Edition, CRC Press, Taylor & Francis Group, 2010.
- 3. V. Ramanarayanan, 'Course material on Switched mode power conversion', 2007.
- 4. Alex Van den Bossche and Vencislav Cekov Valchev, 'Inductors and Transformers for Power Electronics', CRC Press, Taylor & Francis Group, 2005.
- 5. W. G. Hurley and W. H. Wolfle, 'Transformers and Inductors for Power Electronics Theory, Design and Applications', 2013 John Wiley & Sons Ltd.
- 6. Marian. K. Kazimierczuk and Dariusz Czarkowski, 'Resonant Power Converters', John Wiley & Sons limited, 2011.

Course Outcomes (CO)

000100	
CO1	Ability to understand and analyse the operation, characteristics of controlled
	rectifiers.
CO2	Ability to apply switching techniques and basic topologies of DC–DC switching
	regulators.
CO3	Ability to introduce the design of power converter components and to design the
	converters.
CO4	Ability to provide in-depth knowledge about resonant converters.
CO5	Ability to comprehend the concepts of AC-AC power converters and their
	applications

Course		Program Outcomes													PSO					
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4				
CO1	3	3	3	3	3	3	2	2	3	2	1	3	3	3	3	3				
CO2	3	3	3	3	3	3	2	2	3	2	1	3	3	3	3	3				
CO3	3	3	3	3	3	3	2	2	3	2	1	3	3	3	3	3				
CO4	3	3	3	3	3	3	2	2	3	2	1	3	3	3	3	3				
C05	3	3	3	3	3	3	2	2	3	2	1	3	3	3	3	3				

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119

(An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

PE1104	SYSTEM THEORY	L	Т	Ρ	С
		3	1	0	4
Objectives					
-	and the fundamentals of physical systems in terms of its linear	and	l no	nline	ea
models.					
• To educate	on representing systems in state variable form.				
• To educate	on solving linear and non–linear state equations.				
•	he properties of linear systems such as controllability and observ	vabi	lity.		
	on stability analysis of systems using Lyapunov's theory.				
	on modal concepts and design of state and output feedback of	cont	rolle	ers a	an
estimators.					
UNIT – I	STATE VARIABLE REPRESENTATION				12
	Concept of State – State equations for Dynamic Systems – Ti	ime	inv		
	• Non uniqueness of state model – Physical Systems and State				
•	d responses – State Diagrams.		0.0		-
UNIT – II	SOLUTION OF STATE EQUATIONS				12
		- 9	Solu		
Existence and	uniqueness of solutions to Continuous-time state equations			tion	0
Existence and Nonlinear and	uniqueness of solutions to Continuous-time state equations Linear Time Varying State equations – State transition n	natr	ix a	tion and	o it
Existence and Nonlinear and	uniqueness of solutions to Continuous-time state equations	natr	ix a	tion and	o it
Existence and Nonlinear and properties – E Eigen vectors.	uniqueness of solutions to Continuous-time state equations I Linear Time Varying State equations – State transition n valuation of matrix exponential – System modes – Role of Eig	natr	ix a	tion and es a	o it and
Existence and Nonlinear and properties – E	uniqueness of solutions to Continuous-time state equations Linear Time Varying State equations – State transition n	natr	ix a	tion and es a	o it
Existence and Nonlinear and properties – E Eigen vectors. UNIT – III Controllability	uniqueness of solutions to Continuous-time state equations Linear Time Varying State equations – State transition n valuation of matrix exponential – System modes – Role of Eig STABILITY ANALYSIS OF LINEAR SYSTEMS and Observability – Stabilizability and Detectability – Test fo	natr gen or C	ix a valu onti	tion and es a	0 it and 12 us
Existence and Nonlinear and properties – E Eigen vectors. UNIT – III Controllability	uniqueness of solutions to Continuous-time state equations Linear Time Varying State equations – State transition n valuation of matrix exponential – System modes – Role of Eig STABILITY ANALYSIS OF LINEAR SYSTEMS	natr gen or C	ix a valu onti	tion and es a	0 it and 12 us
Existence and Nonlinear and properties – E Eigen vectors. UNIT – III Controllability	uniqueness of solutions to Continuous-time state equations Linear Time Varying State equations – State transition no valuation of matrix exponential – System modes – Role of Eig STABILITY ANALYSIS OF LINEAR SYSTEMS and Observability – Stabilizability and Detectability – Test for Time varying and Time invariant case – Output Controllability –	natr gen or C	ix a valu onti	tion and es a	0 it and 12 us
Existence and Nonlinear and properties – E Eigen vectors. UNIT – III Controllability time Systems – System Realiza	uniqueness of solutions to Continuous-time state equations Linear Time Varying State equations – State transition not valuation of matrix exponential – System modes – Role of Eig STABILITY ANALYSIS OF LINEAR SYSTEMS and Observability – Stabilizability and Detectability – Test for Time varying and Time invariant case – Output Controllability – tions.	natr gen or C	ix a valu onti	tion and es a nuo ibilit	0 it and 12 us
Existence and Nonlinear and properties – E Eigen vectors. UNIT – III Controllability time Systems – System Realiza	uniqueness of solutions to Continuous-time state equations Linear Time Varying State equations – State transition not valuation of matrix exponential – System modes – Role of Eig STABILITY ANALYSIS OF LINEAR SYSTEMS and Observability – Stabilizability and Detectability – Test for Time varying and Time invariant case – Output Controllability – tions. STATE FEEDBACK CONTROL AND STATE ESTIMATOR	natr gen or C - Re	ix a valu onti duc	tion and es a nuo ibilit	0 it and 12 us y 12
Existence and Nonlinear and properties – E Eigen vectors. UNIT – III Controllability time Systems – System Realiza UNIT – IV Introduction –	uniqueness of solutions to Continuous-time state equations Linear Time Varying State equations – State transition no valuation of matrix exponential – System modes – Role of Eig STABILITY ANALYSIS OF LINEAR SYSTEMS and Observability – Stabilizability and Detectability – Test for Time varying and Time invariant case – Output Controllability – tions. STATE FEEDBACK CONTROL AND STATE ESTIMATOR Controllable and Observable Companion Forms – SISO and MI	matr gen or C - Re MO	ix a valu onti duc Sys	tion and es a nuo ibilit	0 it and 12 us y 12 s
Existence and Nonlinear and properties – E Eigen vectors. UNIT – III Controllability time Systems – System Realiza UNIT – IV Introduction – Effect of State	uniqueness of solutions to Continuous-time state equations Linear Time Varying State equations – State transition no valuation of matrix exponential – System modes – Role of Eig STABILITY ANALYSIS OF LINEAR SYSTEMS and Observability – Stabilizability and Detectability – Test for Time varying and Time invariant case – Output Controllability – tions. STATE FEEDBACK CONTROL AND STATE ESTIMATOR Controllable and Observable Companion Forms – SISO and Mill Feedback on Controllability and Observability – Pole Placer	matr gen or C - Re MO men	ix a valu valu onti duc Sys	tion and es a nuo ibilit tem	0 it and 12 us y 12 s
Existence and Nonlinear and properties – E Eigen vectors. UNIT – III Controllability time Systems – System Realiza UNIT – IV Introduction – Effect of State	uniqueness of solutions to Continuous-time state equations Linear Time Varying State equations – State transition no valuation of matrix exponential – System modes – Role of Eig STABILITY ANALYSIS OF LINEAR SYSTEMS and Observability – Stabilizability and Detectability – Test for Time varying and Time invariant case – Output Controllability – tions. STATE FEEDBACK CONTROL AND STATE ESTIMATOR Controllable and Observable Companion Forms – SISO and MI	matr gen or C - Re MO men	ix a valu valu onti duc Sys	tion and es a nuo ibilit tem	0 it and 12 us y 12 s
Existence and Nonlinear and properties – E Eigen vectors. UNIT – III Controllability time Systems – System Realiza UNIT – IV Introduction – Effect of State	uniqueness of solutions to Continuous-time state equations Linear Time Varying State equations – State transition no valuation of matrix exponential – System modes – Role of Eig STABILITY ANALYSIS OF LINEAR SYSTEMS and Observability – Stabilizability and Detectability – Test for Time varying and Time invariant case – Output Controllability – tions. STATE FEEDBACK CONTROL AND STATE ESTIMATOR Controllable and Observable Companion Forms – SISO and Mill Feedback on Controllability and Observability – Pole Placer	matr gen or C - Re MO men	ix a valu valu onti duc Sys	tion and es a nuo ibilit tem y Sta	0 it and 12 us y 12 s
Existence and Nonlinear and properties – E Eigen vectors. UNIT – III Controllability time Systems – System Realiza UNIT – IV Introduction – Effect of State Feedback for b	uniqueness of solutions to Continuous-time state equations Linear Time Varying State equations – State transition no valuation of matrix exponential – System modes – Role of Eig STABILITY ANALYSIS OF LINEAR SYSTEMS and Observability – Stabilizability and Detectability – Test for Time varying and Time invariant case – Output Controllability – tions. STATE FEEDBACK CONTROL AND STATE ESTIMATOR Controllable and Observable Companion Forms – SISO and MII Feedback on Controllability and Observability – Pole Placer oth SISO and MIMO Systems – Full Order and Reduced Order Ob	matr gen or C - Re MO men oser	ix a valu onti duc Sys t b vers	tion and es a nuo ibilit tem y Sta	12 12 12 12 12 12 12 12
Existence and Nonlinear and properties – E Eigen vectors. UNIT – III Controllability time Systems – System Realiza UNIT – IV Introduction – Effect of State Feedback for b UNIT – V Introduction – sense of Lyap	uniqueness of solutions to Continuous-time state equations Linear Time Varying State equations – State transition in valuation of matrix exponential – System modes – Role of Eig STABILITY ANALYSIS OF LINEAR SYSTEMS and Observability – Stabilizability and Detectability – Test for Time varying and Time invariant case – Output Controllability – tions. STATE FEEDBACK CONTROL AND STATE ESTIMATOR Controllable and Observable Companion Forms – SISO and MII e Feedback on Controllability and Observability – Pole Placer oth SISO and MIMO Systems – Full Order and Reduced Order Ob LYAPUNOV STABILTY ANALYSIS Equilibrium Points – BIBO Stability – Stability of LTI Systems – Spunov – Equilibrium Stability of Nonlinear Continuous-time	matr gen or C - Re MO men oser Stak	ix a valu valu onti duc Sys t b vers	tion and es a nuo ibilit tem y Sta y in t	12 us y 12 s at 12 th
Existence and Nonlinear and properties – E Eigen vectors. UNIT – III Controllability time Systems – System Realiza UNIT – IV Introduction – Effect of State Feedback for b UNIT – V Introduction – sense of Lyap Systems – The	uniqueness of solutions to Continuous-time state equations Linear Time Varying State equations – State transition in valuation of matrix exponential – System modes – Role of Eig STABILITY ANALYSIS OF LINEAR SYSTEMS and Observability – Stabilizability and Detectability – Test for Time varying and Time invariant case – Output Controllability – tions. STATE FEEDBACK CONTROL AND STATE ESTIMATOR Controllable and Observable Companion Forms – SISO and MII e Feedback on Controllability and Observability – Pole Placer oth SISO and MIMO Systems – Full Order and Reduced Order Ob LYAPUNOV STABILTY ANALYSIS Equilibrium Points – BIBO Stability – Stability of LTI Systems – Sounov – Equilibrium Stability of Nonlinear Continuous-time e Direct Method of Lyapunov and the Linear Continuous-time	matr gen or C - Re MO men oser Stak	ix avalu valu onti duc Syss t b vers	tion and es a nuo ibilit tem y Sta y in t omo	12 13 14 15 15 15 15 15 15 15 15 15 15
Existence and Nonlinear and properties – E Eigen vectors. UNIT – III Controllability time Systems – System Realiza UNIT – IV Introduction – Effect of State Feedback for b UNIT – V Introduction – sense of Lyap Systems – The	uniqueness of solutions to Continuous-time state equations Linear Time Varying State equations – State transition in valuation of matrix exponential – System modes – Role of Eig STABILITY ANALYSIS OF LINEAR SYSTEMS and Observability – Stabilizability and Detectability – Test for Time varying and Time invariant case – Output Controllability – tions. STATE FEEDBACK CONTROL AND STATE ESTIMATOR Controllable and Observable Companion Forms – SISO and MII e Feedback on Controllability and Observability – Pole Placer oth SISO and MIMO Systems – Full Order and Reduced Order Ob LYAPUNOV STABILTY ANALYSIS Equilibrium Points – BIBO Stability – Stability of LTI Systems – Spunov – Equilibrium Stability of Nonlinear Continuous-time	matr gen or C - Re MO men oser Stak	ix avalu valu onti duc Syss t b vers	tion and es a nuo ibilit tem y Sta y in t omo	12 13 14 15 15 15 15 15 15 15 15 15 15

Total Periods: 60

Text Books:

- 1. M. Gopal, 'Modern Control System Theory', New Age International, 3rd Edition 2014.
- 2. K. Ogatta, 'Modern Control Engineering', Pearson, 5th Edition 2012.
- 3. John S. Bay, 'Fundamentals of Linear State Space Systems', McGraw–Hill, 1999.

- 1. D. Roy Choudhury, 'Modern Control Systems', New Age International, 2005.
- 2. John J. D'Azzo, C. H. Houpis and S. N. Sheldon, 'Linear Control System Analysis and Design with MATLAB', Taylor Francis, 2003.
- 3. Z. Bubnicki, 'Modern Control Theory', Springer, 2005.
- 4. C.T. Chen, 'Linear Systems Theory and Design', Oxford University Press, 3rd Edition, 1999.
- 5. M. Vidyasagar, 'Nonlinear Systems Analysis', 2nd edition, Prentice Hall, Englewood Cliffs, NewJersey.

Course	e Outcomes (CO)
CO1	Ability to understand the fundamentals of physical systems in terms of its
	linear and nonlinear models and also educate on representing systems in state
	variable form
CO2	Ability to understand on solving linear and non-linear state equations
CO3	Ability to represent the time-invariant systems in state space form as well as
	analyze, whether the system is stabilizable, controllable, observable and
	detectable.
CO4	Ability to design modal concepts and design of state and output feedback
	controllers, state observers and estimators
CO5	Ability to understand the stability analysis of systems using Lyapunov's theory.

Course	Program Outcomes													PSO					
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4			
CO1	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3			
CO2	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3			
CO3	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3			
CO4	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3			
C05	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3			

-	RESEARCH METHODOLOGY AND IPR L	Т	Ρ	С
	Common to CSE, AE, PED, MF, MBA, BT 2	0	0	2
Objectives				
Problem for	rmulation, analysis and solutions.			
 Technical p 	aper writing / presentation without violating professional ethics			
Patent draf	ting and filing patents.			
UNIT – I	RESEARCH PROBLEM FORMULATION			6
Meaning of re	esearch problem – Sources of research problem, criteria character	risti	cs o	fa
good research	problem, errors in selecting a research problem, scope and ob	ject	ives	of
research prob	lem. Approaches of investigation of solutions for research prob	olem	i, da	ata
collection, ana	lysis, interpretation, necessary instrumentations			
	1			
UNIT – II	LITERATURE REVIEW			6
Effective litera	ture studies approaches, analysis, plagiarism, and research ethics.			
	1			
UNIT – III	TECHNICALWRITING /PRESENTATION			6
	nical writing, how to write report, paper, developing a research	-	opos	al,
format of resea	arch proposal, a presentation and assessment by a review committee	e.		
UNIT – IV	INTRODUCTION TO INTELLECTUAL PROPERTY RIGHTS (IPR)			6
Nature of Intel	llactual Dranarty, Datante Dacigne Trada and Convright Dracace at			
	llectual Property: Patents, Designs, Trade and Copyright. Process of			
and Developm	ent: technological research, innovation, patenting, development. Int	ern	atio	nal
and Developm Scenario: Inter	ent: technological research, innovation, patenting, development. Int national cooperation on Intellectual Property. Procedure for grants (ern	atio	nal
and Developm	ent: technological research, innovation, patenting, development. Int national cooperation on Intellectual Property. Procedure for grants (ern	atio	nal
and Developm Scenario: Inter Patenting unde	ent: technological research, innovation, patenting, development. Int mational cooperation on Intellectual Property. Procedure for grants over PCT.	ern	atio	nal ts,
and Developm Scenario: Inter Patenting unde UNIT – V	ent: technological research, innovation, patenting, development. Int mational cooperation on Intellectual Property. Procedure for grants of er PCT. INTELLECTUAL PROPERTY RIGHTS (IPR)	of p	atio ater	nal ts, 6
and Developm Scenario: Inter Patenting under UNIT – V Patent Rights:	ent: technological research, innovation, patenting, development. Intenational cooperation on Intellectual Property. Procedure for grants of PCT. INTELLECTUAL PROPERTY RIGHTS (IPR) Scope of Patent Rights. Licensing and transfer of technolog	ern of p gy.	atio ater Pate	nal ts, 6 ent
and Developm Scenario: Inter Patenting under UNIT – V Patent Rights: information a	ent: technological research, innovation, patenting, development. Intenational cooperation on Intellectual Property. Procedure for grants over PCT. INTELLECTUAL PROPERTY RIGHTS (IPR) : Scope of Patent Rights. Licensing and transfer of technologen databases. Geographical Indications. New Developments	ern of p gy.	ation ater Paten	nal ts, 6 ent PR:
and Developm Scenario: Inter Patenting under UNIT – V Patent Rights: information a Administration	ent: technological research, innovation, patenting, development. Intenational cooperation on Intellectual Property. Procedure for grants of PCT. INTELLECTUAL PROPERTY RIGHTS (IPR) : Scope of Patent Rights. Licensing and transfer of technological databases. Geographical Indications. New Developments of Patent System, IPR of Biological Systems, Computer Soft	ern of p gy.	ation ater Paten	nal ts, 6 ent PR:
and Developm Scenario: Inter Patenting under UNIT – V Patent Rights: information a Administration	ent: technological research, innovation, patenting, development. Intenational cooperation on Intellectual Property. Procedure for grants over PCT. INTELLECTUAL PROPERTY RIGHTS (IPR) : Scope of Patent Rights. Licensing and transfer of technologen databases. Geographical Indications. New Developments	ern of p gy.	ation ater Paten	nal ts, 6 ent PR:
and Developm Scenario: Inter Patenting under UNIT – V Patent Rights: information a Administration	ent: technological research, innovation, patenting, development. Intenational cooperation on Intellectual Property. Procedure for grants of PCT. INTELLECTUAL PROPERTY RIGHTS (IPR) : Scope of Patent Rights. Licensing and transfer of technological databases. Geographical Indications. New Developments of Patent System, IPR of Biological Systems, Computer Soft owledge Case Studies, IPR and IITs.	gy. s ir	ation ater Paten N II re e	nal ts, 6 ent PR: tc.
and Developm Scenario: Inter Patenting under UNIT – V Patent Rights: information a Administration	ent: technological research, innovation, patenting, development. Intenational cooperation on Intellectual Property. Procedure for grants of PCT. INTELLECTUAL PROPERTY RIGHTS (IPR) : Scope of Patent Rights. Licensing and transfer of technological databases. Geographical Indications. New Developments of Patent System, IPR of Biological Systems, Computer Soft	gy. s ir	ation ater Paten	nal ts, 6 ent PR: tc.
and Developm Scenario: Inter Patenting unde UNIT – V Patent Rights: information a Administration	ent: technological research, innovation, patenting, development. Intenational cooperation on Intellectual Property. Procedure for grants of er PCT. INTELLECTUAL PROPERTY RIGHTS (IPR) : Scope of Patent Rights. Licensing and transfer of technolog and databases. Geographical Indications. New Developments of Patent System, IPR of Biological Systems, Computer Soft owledge Case Studies, IPR and IITs. Total Period	gy. s ir	ation ater Paten N II re e	nal ts, 6 ent PR: tc.
and Developm Scenario: Inter Patenting unde UNIT – V Patent Rights: information a Administration Traditional kno Reference Boo	ent: technological research, innovation, patenting, development. Intenational cooperation on Intellectual Property. Procedure for grants over PCT. INTELLECTUAL PROPERTY RIGHTS (IPR) : Scope of Patent Rights. Licensing and transfer of technologe and databases. Geographical Indications. New Developments of Patent System, IPR of Biological Systems, Computer Soft bwledge Case Studies, IPR and IITs.	gy. s ir	ation ater Paten N II re e	nal ts, 6 ent PR: tc.
and Developm Scenario: Inter Patenting unde UNIT – V Patent Rights: information a Administration Traditional kno Reference Boo 1. Asimov, 'Inter	ent: technological research, innovation, patenting, development. Intenational cooperation on Intellectual Property. Procedure for grants over PCT. INTELLECTUAL PROPERTY RIGHTS (IPR) : Scope of Patent Rights. Licensing and transfer of technologe and databases. Geographical Indications. New Developments of Patent System, IPR of Biological Systems, Computer Soft bwledge Case Studies, IPR and IITs. Total Period oks: troduction to Design', Prentice Hall, 1962.	gy. s ir	ation ater Paten N II re e	nal ts, 6 ent PR: tc.
and Developm Scenario: Inter Patenting unde UNIT – V Patent Rights: information a Administration Traditional kno Reference Boo 1. Asimov, 'Int 2. Halbert, 'Re	ent: technological research, innovation, patenting, development. Int national cooperation on Intellectual Property. Procedure for grants of er PCT. INTELLECTUAL PROPERTY RIGHTS (IPR) : Scope of Patent Rights. Licensing and transfer of technolog and databases. Geographical Indications. New Developments of Patent System, IPR of Biological Systems, Computer Soft owledge Case Studies, IPR and IITs. Total Period oks: troduction to Design', Prentice Hall, 1962. esisting Intellectual Property', Taylor & Francis Ltd, 2007.	gy. s ir	ation ater Paten N II re e	nal ts, 6 ent PR: tc.
and Developm Scenario: Inter Patenting under UNIT – V Patent Rights: information a Administration Traditional kno Reference Boo 1. Asimov, 'Int 2. Halbert, 'Re 3. Mayall, 'Ind	ent: technological research, innovation, patenting, development. Intenational cooperation on Intellectual Property. Procedure for grants over PCT. INTELLECTUAL PROPERTY RIGHTS (IPR) : Scope of Patent Rights. Licensing and transfer of technologe and databases. Geographical Indications. New Developments of Patent System, IPR of Biological Systems, Computer Soft bwledge Case Studies, IPR and IITs. Total Period oks: troduction to Design', Prentice Hall, 1962.	gy. s ir	ation ater Paten N II re e	nal ts, 6 ent PR: tc.
and Developme Scenario: Inter Patenting unde UNIT – V Patent Rights: information a Administration Traditional kno Reference Boo 1. Asimov, 'Int 2. Halbert, 'Re 3. Mayall, 'Ind 4. Niebel, 'Pro	ent: technological research, innovation, patenting, development. Intrational cooperation on Intellectual Property. Procedure for grants over PCT. INTELLECTUAL PROPERTY RIGHTS (IPR) Scope of Patent Rights. Licensing and transfer of technologe and databases. Geographical Indications. New Developments of Patent System, IPR of Biological Systems, Computer Soft owledge Case Studies, IPR and IITs. Total Period Ks: troduction to Design', Prentice Hall, 1962. esisting Intellectual Property', Taylor & Francis Ltd, 2007. dustrial Design', McGraw Hill, 1992.	gy. s ir	ation ater Paten II re e 3	nal ts, 6 ent PR: tc. 0

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119 (An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

Course	e Outcomes (CO)
CO1	Ability to formulate research problem
CO2	Ability to carry out research analysis
CO3	Ability to follow research ethics
CO4	Ability to understand that today's world is controlled by Computer, Information
	Technology, but tomorrow world will be ruled by ideas, concept, and creativity
CO5	Ability to understand about IPR and filing patents in R & D

Course				PSO												
Outcomes	а	b	С	d	е	f	g	h	i	j	k		1	2	3	4
CO1	3	3	3	2	1	2	1	2	2	1	3	3	3	2	3	3
CO2	3	3	3	2	1	2	1	2	2	1	3	3	3	2	3	2
CO3	2	3	2	2	1	2	1	3	2	1	3	3	3	1	3	1
CO4	3	3	3	2	1	2	1	3	2	1	3	3	3	2	3	2
C05	2	3	2	2	1	2	1	3	2	1	3	3	3	1	3	2

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119

(An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

PE1111

POWER ELECTRONICS CIRCUIT SIMULATION LABORATORY

L	т	Ρ	С
0	0	4	2

Objectives

- To understand the dynamics and different operating modes of power converters.
- To analyze, design and simulate different rectifier circuits for generic load.
- To simulate different DC to DC Converter topologies.
- To understand the dynamics and different operating modes of AC to AC converters.
- To simulate different inverter topologies.
- To develop skills on PCB design and fabrication among the students.

List of experiments

- 1. Simulation of Single Phase Half Converter with different loads using MATLAB.
- 2. Simulation of Single Phase Full Converter with different loads using MATLAB.
- 3. Simulation of Single Phase Semi Converter with motor load using MATLAB.
- 4. Simulation of Three Phase Full Controlled Rectifier with R, RL loads using MATLAB.
- 5. Simulation of step down chopper with different loads using MATLAB.
- 6. Simulation of Buck Converter using MATLAB.
- 7. Simulation of Boost Converter using MATLAB.
- 8. Simulation of Buck Boost Converter using MATLAB.
- 9. Simulation of Single phase half wave AC Voltage Controller with R load using MATLAB.
- 10. Simulation of Single phase full wave AC Voltage Controller with R load using MATLAB.
- 11. Simulation of Three phase full wave AC Voltage Controller with R load using MATLAB.
- 12. Circuit Simulation of Voltage Source Inverter and study of spectrum analysis with and without filter using MATLAB.
- 13. PCB design and fabrication of DC power supply using any PCB design software (open source).

Total Periods: 60

LIST OF EQUIPMENT FOR A BATCH OF 25 STUDENTS

- 1. Personal Computers (Intel Core i3, 250 GB,1 GB RAM) 10
- 2. Printer 1
- 3. Server (Intel Core i3, 4 GB RAM) (High Speed Processor) 1
- 4. Software MATLAB/SIMULINK/SCILAB/PSPICE Software 10

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119 (An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

Course Outcomes (CO)									
CO1	Comprehensive understanding on mathematical modeling of Rectifier and ability to								
	implement the same using simulation tools								
CO2	Ability to implement the DC to DC converter using simulation tools								
CO3	Ability to implement the AC to AC converter using simulation tools								
CO4	Ability to implement the DC to AC converter using simulation tools								
CO5	Exposure to PCB designing and fabrication								
	·								

Course		Program Outcomes												PSO				
Outcomes	а	b	С	D	е	f	g	h	i	j	k	Ι	1	2	3	4		
CO1	3	3	3	3	3	2	1	1	1	1	1	3	3	3	2	1		
CO2	3	3	3	3	3	2	1	1	1	1	1	3	3	3	2	1		
CO3	3	3	3	3	3	2	1	1	1	1	1	3	3	3	2	1		
CO4	3	3	3	3	3	2	1	1	1	1	1	3	3	3	2	1		
C05	3	3	3	3	3	2	1	1	1	1	1	3	3	3	2	1		

(An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

PE1112	POWER CONVERTERS LABORATORY	L	Т	Ρ	С
		0	0	4	2
Objectives					
To provide	hands on experience with power electronic converter design	and	test	ing	
List of experim					
•	e Half and Full converter with R, RL, RLE loads.				
•	nmutated Chopper.				
	nmutated Chopper.				
	speed control of three phase induction motor using PWM tech	nniq	ue.		
5. AC voltage	0				
6. Series Inver					
7. Parallel Inve					
	Bedford Inverter.				
	C to DC Converter.				
10. Study of Cy	cloconverters.				
	T	D	! -		
	Total	Peri	oas	: t	50
1. Full convert	LIST OF EQUIPMENT FOR A BATCH OF 25 STUDENTS				
	ET, OPAMPS/SCR – 10				
	e square wave inverter -2				
0 1	C Power supplies – 5				
5. CROs – 10					
6. Resistive lo	ad – 5				
7. Inductive lo					
8. Capacitive l					
9. Breadboard					
10. Digital Mult					
0	age Oscilloscope – 5				
-	e Isolation Transformer – 5				
• •	se step–down transformer – 5				
• •	e sine PWM Inverter – 5				
-	e sine PWM Inverter – 5				
• •	e auto transformer – 2				
• •	e Auto transformer – 2				
· ·					

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119 (An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

Course Outcomes (CO)								
CO1	Ability to analyze about AC to DC converter circuits.							
CO2	Ability to analyze about DC to DC converter circuits.							
CO3	Ability to analyze about DC to AC converters.							
CO4	Ability to acquire knowledge on AC to AC converters.							
CO5	Ability to understand the concepts of resonant converter and its implementation in real time applications.							
	real time applications.							

Course				PSO												
Outcomes	а	b	С	d	е	f	g	h	i	j	k		1	2	3	4
CO1	3	3	3	3	3	2	1	1	1	1	1	2	3	3	2	1
CO2	3	3	3	3	3	2	1	1	1	1	1	2	3	3	2	1
CO3	3	3	3	3	3	2	1	1	1	1	1	2	3	3	2	1
CO4	3	3	3	3	3	2	1	1	1	1	1	2	3	3	2	1
C05	3	3	3	3	3	2	1	1	1	1	1	2	3	2	2	1

SEMESTER – II

PE1201

ANALYSIS AND DESIGN OF INVERTERS

Ρ L Т С 3 0 0 3

Objectives

- To Provide the electrical circuit concepts behind the different working modes of inverters • so as to enable deep understanding of their operation.
- To equip with required skills to derive the criteria for the design of inverters for UPS, drives etc.,
- To analyze and comprehend the various operating modes of different configurations of • inverters.
- To design different single phase and three phase inverters.
- To impart knowledge on multilevel inverters and modulation techniques

UNIT – I SINGLE PHASE INVERTERS

Principle of operation of half and full bridge inverters – Performance parameters; Voltage control of single - phase inverters using various PWM techniques; Various harmonic elimination techniques; Forced commutated thyristor inverters.

UNIT – II

THREE PHASE VOLTAGESOURCE INVERTERS

180-degree and 120-degree conduction mode inverters with star and delta connected loads; Voltage control of three phase inverters- single, multi pulse, sinusoidal, space vector modulation techniques; Application to drive system.

UNIT – III **CURRENT SOURCE INVERTERS**

Operation of six-step thyristor inverter - Inverter operation modes; Load commutated inverters; Auto sequential current source inverter (ASCI); Current pulsations; Comparison of current source inverter and voltage source inverters; PWM techniques for current source inverters.

MULTILEVEL & BOOST INVERTERS UNIT – IV

Multilevel concept: Diode clamped, Flying capacitor, Cascade type, Comparison of multilevel inverters and its application; PWM techniques for MLI; Single phase & Three phase Impedance source inverters.

UNIT – V **RESONANT INVERTERS AND POWER CONDITIONERS**

Series and parallel resonant inverters; Voltage control of resonant inverters – Class E resonant inverter, resonant DC–Link inverters; Power line disturbances; Power conditioners; UPS- offline UPS, online UPS.

> Total Periods: 45

9

9

9

9

9

Text Books:

- 1. M. H. Rashid, 'Power Electronics Circuits, Devices and Applications ', Prentice Hall India, Fourth edition, New Delhi, 2017.
- 2. Ned Mohan, T. M. Undeland and W. P. Robbin, 'Power Electronics: converters, Application and design' John Wiley and sons. Wiley India, 3rd Edition, 2007
- 3. P. S. Bimbra, 'Power Electronics', Khanna Publishers, 11th Edition, 2018

- 1. Jai P. Agrawal, 'Power Electronics Systems-Theory and design', Pearson Education, Second Edition, 2001.
- 2. Bimal K. Bose 'Modern Power Electronics and AC Drives', Pearson Education, Second Edition, 2015.
- 3. Philip T. Krein, 'Elements of Power Electronics' Oxford University Press, 2017.
- 4. P. C. Sen, 'Modern Power Electronics', Wheeler Publishing Co, First Edition, New Delhi, 2005.

Course	Course Outcomes (CO)								
CO1	To design and analyze working modes and operation of single phase inverters.								
CO2	To design and analyze working modes and operation of three phase inverters.								
CO3	To design and analyze working modes and operation of current source inverter.								
CO4	To design and analyze working modes and operation of multilevel and boost								
	inverter.								
CO5	To analyze the working modes and operation of resonant inverters and power								
	conditioners.								

Course		Program Outcomes									PSO					
Outcomes	а	b	С	d	е	f	g	h	i	j	k		1	2	3	4
CO1	3	3	2	2	2	1	2	1	1	1	2	3	3	3	3	2
CO2	3	3	2	2	2	1	1	1	1	1	1	3	3	3	3	1
CO3	3	3	2	2	2	1	1	1	1	1	1	3	3	3	3	2
CO4	3	3	3	3	2	1	2	1	1	1	2	3	3	3	3	2
C05	3	3	3	3	2	1	2	1	1	1	2	3	3	3	3	1

(An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

PE1202	ANALYSIS OF ELECTRICAL DRIVES	L	Т	Ρ	С
		3	1	0	4
Objectives					
•	d analyze the operation of the converter fed DC drives, both qu	ualit	ativ	ely a	and
quantitative	•	•-			
	d analyze the operation of the chopper fed DC drives, both qu	Jalit	ative	ely a	no
quantitative	•				
	ze the students on the operation of VSI and CSI fed induction mo	otor	driv	es.	
	and the field-oriented control of induction machines.				
To impart k	nowledge on the control of synchronous motor drives.				
UNIT – I	RECTIFIER CONTROL OF DC DRIVES	1	- 1		9
• •	ase control – Fundamental relations; Analysis of series and sep		•		
	h single phase and three phase converters – Waveforms,	•			
• •	erformance characteristics; Continuous and discontinuous arn				
•	rrent ripple and its effect on performance; Operation with entation of braking schemes; Drive employing dual converter.	I IIE	ew	ieei	ΠĘ
uloue, implem	intation of braking schemes, brive employing dual converter.				
UNIT – II	CHOPPER CONTROL OF DC DRIVES				g
	time ratio control and frequency modulation; Class A, B, C, D and	ndE	cho	nnc	-
	motor – Performance analysis, multi–quadrant control; C			•••	
	n of braking schemes; Multi–phase chopper; Related problems.	πομ	per	ba.	set
Implementatio	Tor braking schemes, Mattr phase chopper, heldted problems.				
UNIT – III	CONTROL OF INDUCTION MOTOR DRIVES - STATOR	SIDE	Ξ Δ	ND	9
	ROTORSIDE				
AC voltage con	troller circuit, six step inverter voltage control, closed loop varia	able	fre	quei	וכי
-	with dynamic braking, CSI fed variable frequency drives, com			•	-
	ive, Static rotor resistance control, Injection of voltage in the	•			
Static Scherbiu	s drives, Power factor considerations, Modified Kramer drives.				
UNIT – IV	FIELD ORIENTED CONTROL OF INDUCTION MOTOR DRIVES				9
Field oriented	control of induction machines – Theory, DC drive analogy; Dire	ct a	nd I	ndir	ec
	vector estimation; Direct torque control of Induction Mac				
-	n stator and rotor fluxes; DTC control strategy.		,		•
<u> </u>					
					9
UNIT – V	SYNCHRONOUS MOTOR DRIVES				_
		eau	atio	ns	to:
Wound field	cylindrical rotor motor: Equivalent circuits, Performance	•			
Wound field operation from	cylindrical rotor motor: Equivalent circuits, Performance a voltage source; Starting and braking, V curves, Self-control	•			
Wound field operation from	cylindrical rotor motor: Equivalent circuits, Performance	•			
Wound field operation from	cylindrical rotor motor: Equivalent circuits, Performance a voltage source; Starting and braking, V curves, Self-control	; M	argii	n an	
Wound field operation from	cylindrical rotor motor: Equivalent circuits, Performance a voltage source; Starting and braking, V curves, Self–control e control, Power factor control, Brushless excitation systems.	; M	argii	n an	gl

Text Books:

- 1. Gopal K. Dubey, 'Fundamentals of Electrical Drives', Narosa Publishing House, New Delhi, Second Edition, 2010.
- 2. R. Krishnan, 'Electric Motor Drives Modeling, Analysis and Control', Prentice–Hall of India Pvt. Ltd., New Delhi, 2010.
- 3. Gopal K Dubey, 'Power Semiconductor controlled Drives', Prentice Hall Inc., New Jersy, 1989.

Reference Books:

- 1. N.K. De., P.K. SEN' Electric drives' PHI, 2012.
- 2. Bimal K Bose, 'Modern Power Electronics and AC Drives', Pearson Education Asia, 2015.
- 3. Vedam Subramanyam, 'Electric Drives Concepts and Applications', Second Edition, McGraw Hill, 2016.
- 4. W. Leonhard, 'Control of Electrical Drives', Narosa Publishing House, 1992.
- 5. Murphy J.M.D and Turnbull, 'Thyristor Control of AC Motors', Pergamon Press, Oxford, Delhi, 2001.

Course Outcomes (CO)

CO1	Will be able to formulate, design and analyze converter fed DC drives.
CO2	Will be able to formulate, design and analyze chopper fed DC drives.
CO3	Will acquire knowledge on the operation of VSI and CSI fed induction motor drives.
CO4	Will get expertise in the field-oriented control of Induction motor drives.
CO5	Will be able to formulate the control schemes for synchronous motor drives.

Course		Program Outcomes									PSO					
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4
CO1	3	3	3	3	3	1	2	1	1	1	1	1	3	3	2	3
CO2	3	3	3	3	3	1	2	1	1	1	1	1	3	3	2	3
CO3	3	3	3	3	3	1	2	1	1	1	1	1	3	3	2	3
CO4	3	3	3	3	3	1	2	1	1	1	1	1	3	3	2	3
C05	3	3	3	3	3	1	2	1	1	1	1	1	3	3	2	3

	(An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New	w Delhi)		
PE1203	ELECTRIC VEHICLE AND POWER MANAGEMENT	L	Т	Ρ	С
		3	0	0	3
Objectives					
-	ize about the significance of EV than conventional vehicles				
• To unders Performan	tand the concept of hybrid electric vehicles and its types the second second second second second second second	oes			eir
• To underst	and the various converter topologies for EV vehicle.				
• To underst storage sys	tand the different strategies related to battery technolog stems.	gy a	nd	ene	rgy
UNIT – I	Introduction to conventional and Electric Vehicles				9
Operation Ch	Vehicles: Internal combustion Engines – Working prinaracteristics, Emission Control. EV vehicles: EV system – ponents of EV – Recent EVs and HEVs – EVs advantages – I Impact.	Cont	figu	ratio	ons
UNIT – II	Hybrid Electric Vehicles				9
Drive Trains, I	ybrid Electric drive, Types of Hybrids, Architectures of H Design of HEV, Plug–in Hybrid Electric Vehicles (PHEVs), Fu /s), Comparison of Different Vehicle Specifications				
UNIT – III	Electric Trains and propulsion				9
State Model, control of DC Configuration	ion configurations, Transmission components, Ideal Ge EV Motor Sizing. Electric Propulsion: DC motor drives, Con C Motor drives, Configuration and control of Induction and control of Permanent Magnet Motor drives, Con tch Reluctance Motor drives.	figu Mot	ratio tor	on a driv	nd es,
UNIT – IV	Power Converter Topologies for EV/PHEV Charging				9
Design of DC,	ter topology, Grid and Photovoltaic (PV) System for EV/P /DC Converters and DC/AC Inverters for Grid/PV, Integra nout Transformer Based Isolated Charger topology.			-	-
UNIT – V	Energy Storage and Battery management systems for EV	1			9
Battery Techn	ologies – Analysis: Lead–Acid Battery, Nickel–Based Batte		, Lit	hiur	n –
•	es – Battery parameters, Fuel cell – types and charac				
capacitors-ba	sed energy storage and its analysis, ultra-high-speed fly	whe	els-	-bas	sed
	ge and its analysis, Hybridization of energy storage de systems – SOC Estimation, SOH Estimation.	vice	s, E	Batt	ery

Total Periods: 45

Text Books:

- 1. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, 'Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design', CRC Press, 2004.
- 2. Iqbal Husain, 'Electric and Hybrid vehicles: Design fundamentals', CRC PRESS, Boca Raton London, New York Washington, D.C, 2005.

- 1. C. Mi, M. A. Masrur and D. W. Gao, 'Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives', John Wiley & Sons, 2011.
- 2. S. Onori, L. Serrao and G. Rizzoni, 'Hybrid Electric Vehicles: Energy Management Strategies', Springer, 2015.
- 3. Larminie, James, and John Lowry, 'Electric Vehicle Technology Explained' John Wiley and Sons, 2012.
- 4. Tariq Muneer and Irene Illescas García, 'The automobile, In Electric Vehicles: Prospects and Challenges', Elsevier, 2017.
- 5. Sheldon S. Williamson, 'Energy Management Strategies for Electric and Plug–in Hybrid Electric Vehicles', Springer, 2013.
- 6. Gregory L. Plett, 'Battery Management systems', ARTECH House, London, 2016.

Course	e Outcomes (CO)
CO1	Learned the significance of Electric Vehicle compared to conventional vehicles.
CO2	Able to understand the concept of hybrid electric vehicles architecture with
	their performance.
CO3	Acquired the knowledge in EV transmission and electric propulsion using
	various drives train.
CO4	Ability to design the various converter topologies for EV vehicle.
CO5	Concept of different strategies related to battery technology and energy
	storage systems are analysed.

Course	Program Outcomes													PSO				
Outcomes	а	b	С	d	е	f	g	h	i	j	k		1	2	3	4		
CO1	3	2	3	1	3	2	2	3	3	2	1	3	3	3	3	3		
CO2	3	2	3	3	3	2	2	3	3	2	1	2	3	3	3	3		
CO3	3	3	3	3	2	2	2	3	2	2	2	3	3	3	3	2		
CO4	3	2	3	3	3	3	3	3	3	3	2	3	3	3	3	3		
C05	3	2	2	2	3	3	3	3	3	3	2	3	3	3	3	3		

PE1204 EMBEDDED CONTROLLERS L Т Ρ 3 0 0 **Objectives** To get Introduced to PIC controllers. To learn the concepts of ARM and DSP processors To learn the real-time embedded tools. To learn embedded –C coding of various applications To understand the embedded peripheral concepts with its structure and programs. • UNIT – I Introduction to PIC Microcontroller PIC 16C and PIC 16F series, PIC 18F series – Pin diagram and architecture, Pipelining, memory mapping, SFR's (Special Function Registers), Timers – Structure of timer, interrupt structure, Instruction Set – Addressing modes – Simple ASM programs. UNIT – II **ARM PROCESSOR** ARM core architecture – Cortex 9, typical Pin diagram, ARM development tools, memory hierarchy, Instruction Set – Addressing modes – ASM programs for basic arithmetic operations, Co-processor. UNIT – III **DSP PROCESSOR** DSP processors: TMS320C2407 – Architecture and pin diagram, General purpose Input/Output (GPIO) Functionality– Interrupts – A/D converter–Event Managers (EVA, EVB) – PWM signal generation. UNIT – IV **Embedded tools and application programs** Compiler – KEIL, Circuit Schematic Simulation software – PROTEUS. Application Programs using C: I/O port handling, Keypad and multiplexed display, Timers and counters, interrupt handling, Pulse generation program, Capture and compare (CCP), A/D program. UNIT-V SYSTEM DESIGN – CASE STUDY Voltage regulation of DC–DC converters (buck and boost converter), Stepper motor and DC motor control, Clarke's and parks transformation – Space vector PWM – Control of Induction Motors and PMSM.

С

3

9

9

9

9

9

Text Books:

- 1. Muhammad Ali Mazidi, Rolin D. Mckinlay, Danny Causey 'PIC Microcontroller and Embedded Systems using Assembly and C for PIC18', Pearson Education, 2021.
- 2. S. Furber, 'ARM System on Chip Architecture' Second edition, pearson publication, 2000.
- 3. Hamid A. Toliyat, Steven Campbell, 'DSP based electromechanical motion control', CRC Press, 2019.

- 1. John B. Peatman, 'Design with PIC Microcontrollers,' Pearson Education, Asia 2004.
- 2. John Iovine, 'PIC Microcontroller Project Book', McGraw Hill 2000.

Course	Course Outcomes (CO)							
CO1	Ability to understand the features, architectures of PIC, Ability to write the assembly							
	language program.							
CO2	Ability to understand the features, architectures of ARM Processor and ability to							
	write the assembly language program.							
CO3	Ability to understand the features, architectures of DSP Processor.							
CO4	Ability to work on compiler tool and simulation software tool. Ability to develop							
	embedded C program							
CO5	Ability to grasp the embedded peripheral design concepts and its applications.							

Course		Program Outcomes												PSO					
Outcomes	а	b	С	d	е	f	g	h	i	j	k	I	1	2	3	4			
CO1	3	2	2	2	3	3	1	1	3	1	3	2	3	2	2	1			
CO2	3	2	2	2	3	3	1	1	3	1	3	3	3	3	2	1			
CO3	3	2	2	2	3	3	1	1	3	1	3	2	3	3	2	1			
CO4	3	2	2	2	3	3	1	1	3	1	2	3	3	3	2	1			
C05	2	3	3	3	2	2	3	3	3	1	2	3	3	2	2	1			

(An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

PE12	EMBEDDED CONTROLLERS LABOROTORY	L	Т	Ρ	C
		0	0	4	2
Objecti	ves				
-	erform simple arithmetic operations using various embedded and DSF	, pro	cess	ors.	
•	erform simulation experiments of interrupts and ports interface using	•			r.
-	mulate circuit of power converters using Proteus along with compilat			-	
	pilers.				
	LIST OF EXPERIMENTS				
•	ple arithmetic operations using PIC, ARM.				
•	eriments using MPLAB or micro-C Compiler :				
-	O port handling				
	imer handling using different modes imer as counter				
	xternal Interrupt handling program				
	nternal interrupt handling program				
	eriments using Proteus with keil compiler, MPLAB or micro-C Compile	r٠			
•	ulse generation for DC–DC power electronic converter				
•	ulse generation for single phase fully controlled bridge converter				
	ulse generation for H–bridge DC motor driver				
-	tepper motor position control.				
v) N	Aessage Display using 2–line LCD.				
	Total P	orio	de.	6	0
		eno	<u>us.</u>	0	0
	LIST OF EQUIPMENT FOR A BATCH OF 25 STUDENTS				
1. P	IC microcontroller (3 Nos)				
	RM Processor (3 Nos)				
	eil Compiler (Open Source)				
	IPLAB or micro-C Compiler (Open Source)				
	roteus (Open Source)				
	Outcomes (CO)				
	Acquire knowledge on interfacing peripheral devices using embedded				
	Acquire practical knowledge on embedded tools and its real	-tim	e o	rien	ted
	application				
	Ability to utilize the knowledge of embedded controllers for the appli	catio	n in	the	
	field of Electrical Engineering.	.			
	Acquire knowledge on advanced DSP processors and programming in controllers.	emb	edd	ed	
	Acquire practical knowledge on various embedded tools and	its	rea	al—ti	me

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119 (An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

Course Outcomes			PSO													
	а	b	С	d	е	f	g	Н	i	j	k		1	2	3	4
CO1	3	1	1	2	3	2	2	3	1	1	1	3	1	1	3	3
CO2	3	3	2	3	3	2	2	3	2	1	1	3	1	1	3	3
CO3	3	3	3	3	3	2	2	3	2	1	1	3	1	1	3	3
CO4	3	2	3	3	3	2	2	3	2	1	1	3	1	1	3	3
CO5	3	3	3	3	3	2	2	3	2	2	2	3	1	1	3	3

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119

(An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

PE1212	MINI PROJECT	L	Т	Ρ	С
		0	0	4	2

Objectives

- To develop their own innovative prototype of ideas.
- To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.
- To train the students in preparing project reports and to face reviews and viva voce examination

A project to be developed based on one or more of the following concepts.

Rectifiers, DC-DC Converters, Inverters, cycloconverters, DC drives, AC drives, Special Electrical Machines, Renewable Energy Systems, Linear and non-linear control systems, Power supply design for industrial and other applications, AC-DC power factor circuits, micro grid, smart grid and robotics.

The students work on a topic approved by the head of the department and prepares a comprehensive mini project report after completing the work to the satisfaction. The progress of the project is evaluated based on a minimum of two reviews. The review committee may be constituted by the Head of the Department. A mini project report is required at the end of the semester. The mini project work is evaluated based on oral presentation and the mini project report jointly by external and internal examiners constituted by the Head of the Department.

Total Periods : 60

Cours	e Outcomes (CO)
CO1	On Completion of the mini project work students will be in a position to take up their
	final year project work and find solution by formulating proper methodology.
CO2	Acquire practical knowledge within the chosen area of technology for project
	development.
CO3	Identify, analyze, formulate and handle programming projects with a comprehensive
	and systematic approach.
CO4	Contribute as an individual or in a team in development of technical projects.
CO5	Develop effective communication skills for presentation of project related activities.

Course					Prog	gram	Outc	omes	5					PS	60	
Outcomes	а	b	С	d	е	f	g	Н	i	j	k	I	1	2	3	4
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	З	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

SEMESTER – III

PE1311

ELECTRICAL DRIVES LABORATORY

T P C

L

0

Objectives

- To design and analyse various DC and AC drives.
- To generate the firing pulses for converters and inverters using digital processors.
- Design of controllers for linear and non-linear systems.
- Implementation of closed loop system using hardware simulation.
- To perform DSP based speed control of Switched Reluctance Motor.

LIST OF EXPERIMENTS

- 1. Speed control of Converter fed DC motor.
- 2. Speed control of Chopper fed DC motor.
- 3. V/f control of three–phase induction motor.
- 4. Micro controller–based speed control of Stepper motor.
- 5. Speed control of BLDC motor.
- 6. DSP based speed control of Switched Reluctance Motor.
- 7. Voltage Regulation of three–phase Synchronous Generator.
- 8. Cycloconverter fed Induction motor drives.
- 9. Single phase Multi Level Inverter based induction motor drive.
- 10. Study of power quality analyzer.

Total Periods: 60

LIST OF EQUIPMENTS FOR A BATCH OF 25 STUDENTS

- 1. Converter fed DC motor drive 1
- 2. Chopper fed DC motor drive 1
- 3. V/f control-based Induction motor devices 1
- 4. Cyclo converter fed induction motor drive 1
- 5. Three phase synchronous generator 1
- 6. SRM Drive with DSP controller 1
- 7. PMBLDC Drive 1
- 8. Stepper motor drive with microprocessor–based control 1
- 9. Single phase multilevel inverter fed with motor drive 1
- 10. Power Quality Analyser 1
- 11. Tachometers 10
- 12. Ammeters 10
- 13. Voltmeters 10
- 14. Digital storage oscilloscope 5

Course	Outcomes (CO)
CO1	Ability to simulate different types of machines, converters in a system.
CO2	Analyze the performance of various electric drive systems.
CO3	Ability to perform both hardware and software simulation.
CO4	To perform speed control of DSP based Switched Reluctance Motor.
CO5	To perform voltage regulation of three phase Synchronous Generator.

Γ

Course					Pro	ogram	Outo	ome	es				PSO				
Outcomes	а	b	С	d	е	f	g	h	i	j	k		1	2	3	4	
CO1	3	3	2	2	3	1	1	1	1	3	2	2	3	2	2	1	
CO2	3	3	3	3	3	2	3	1	1	3	3	1	3	3	3	1	
CO3	2	3	3	3	3	2	3	1	1	3	3	1	3	3	3	1	
CO4	3	3	3	3	3	2	3	1	1	3	3	1	3	3	3	1	
C05	3	3	3	3	3	2	3	1	1	3	3	1	3	3	3	1	

PE1312

PROJECT WORK – PHASE I

L T P C 0 0 12 6

Objectives

To impart knowledge on

- To explore contemporary research issues.
- To perform literature survey on recent developments in a selected problem domain.
- To workout with the strategies to find a solution addressing the problem.

Course Outcomes (CO)

CO1	Demonstrate a depth of knowledge in Power Electronics and Drives
CO2	Formulate a research problem addressing contemporary technical issues.

- CO3 Perform literature survey to explore various methodologies.
- **CO4** Undertake problem identification, formulation and solution.

Course					Prog	gram	Outc	omes	5				PSO					
Outcomes	а	b	С	d	е	f	g	Н	i	j	k		1	2	3	4		
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
CO4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		

SEMESTER - IV

PE1411

PROJECT WORK – PHASE II

L T P C 0 0 24 12

Objectives

To impart knowledge on

- To explore contemporary research issues.
- To perform literature survey on recent developments in a selected problem domain.
- To exercise various strategies to find a solution addressing the problem.
- To compare the results with existing methodologies.
- To communicate the work done in written and oral forms.

Course	e Outcomes (CO)
CO1	Demonstrate a depth of knowledge in Power Electronics and Drives
CO2	Formulate a research problem addressing contemporary technical issues.
CO3	Perform literature survey to explore various methodologies.
CO4	Undertake problem identification, formulation and solution.
CO5	Assess the performance of the proposed technique with existing literature.
CO6	Communicate the research findings, in the form of publications in journals, conference proceedings etc.

Course					Prog	gram	Outc	omes	5					PS	60	
Outcomes	а	b	С	d	е	f	g	Н	i	j	k		1	2	3	4
CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	З	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

PROFESSIONAL ELECTIVE I & II

PE1251 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING L T P C

OBJECTIVES

• To impart knowledge about AI and Machine learning

- To learn and analyze the Fuzzy based expert system
- To study the basics of supervised learning and their applications.
- To understand unsupervised learning and deep learning algorithms
- To understand and apply the concept of AI / ML for real time applications.

UNIT – I INTRODUCTION TO ARTIFICIAL INTELLIGENCE (AI)

History and evolution of artificial intelligence, strong AI and weak AI, definitions of Artificial Intelligence, emergence of AI – Technological advances, Machine Learning (ML) – Deep Learning, Functions of AI, Characteristics of AI, Applications of AI – Industry 4.0, education sector, Business and Finance Sector, society.

UNIT – II AI – EXPERT SYSTEMS

Classical sets – Fuzzy sets – Fuzzy relations – Fuzzification – Fuzzy rules – Membership function – Knowledge base – Decision–making logic – Defuzzification – Introduction to Neuro–Fuzzy system – Adaptive Fuzzy system (Qualitative analysis).

UNIT – III SUPERVISED LEARNING

Linear Models for Classification – Discriminant Functions – Probabilistic Generative Models – Probabilistic Discriminative Models – Bayesian Logistic Regression – Decision Trees – Classification Trees – Regression Trees – Pruning. Neural Networks – Feed–forward Network Functions – Error – Back propagation – Regularization – Mixture Density and Bayesian Neural Networks – Kernel Methods – Dual Representations – Radial Basis Function Networks. Ensemble methods – Bagging– Boosting (Qualitative analysis).

UNIT – IV UNSUPERVISED LEARNING

Clustering – K–means – EM – Mixtures of Gaussians – The EM Algorithm in General – Model selection for latent variable models – high–dimensional spaces – The Curse of Dimensionality – Dimensionality Reduction – Factor analysis – Principal Component Analysis – Probabilistic PCA – Independent components analysis – RNN – LSTM (Qualitative analysis).

UNIT – V REAL TIME APPLICATIONS

Smart cities – Vehicle Parking and Traffic Management System – smart waste and disposal management system – smart mobility – Bio–medical image processing – Inventory control – Demand Prediction for Inventory Management

Total Periods: 45

3

0

0

3

9

9

9

9

9

TEXT BOOKS:

- 1. S. Russell and P. Norvig, 'Artificial Intelligence: A Modern Approach', Pearson, Fourth Edition, 2020.
- Timothy J. Ross, 'Fuzzy Logic with Engineering Applications', Tata McGraw Hill, 4th edition, 2016.
- 3. Ethem Alpaydin, 'Introduction to Machine Learning', PHI learning Pvt Limited, 2015

REFERENCE BOOK:

- 1. Dan W. Patterson 'Introduction to Artificial Intelligence and Expert Systems', Pearson Education India, 1st Edition, 2015.
- 2. Kevin P. Murphy, 'Machine Learning: A Probabilistic Perspective', MIT Press, 2012
- 3. Hastie, Tibshirani, Friedman, 'The Elements of Statistical Learning: Data Mining, Inference, and Prediction', Second Edition (Springer Series in Statistics), 2017.
- 4. Stephen Marsland, 'Machine Learning An Algorithmic Perspective', Chapman and hall/CRC Press, 2nd Edition, 2014.
- 5. Ren, Jingzheng; Shen, Weifeng; Man, Yi; Dong, Lichun, 'Applications of Artificial Intelligence in Process Systems Engineering', Elsevier, 1st Edition, 2021.
- 6. Harry Collins, 'Artifictional Intelligence: Against Humanity's Surrender to Computers', Polity, 1st Edition, 2018.
- 7. S.N.Sivanandam and S.N.Deepa, 'Principles of Soft computing', Wiley India Edition, 3rd Edition, 2018.
- Peter Flach, 'Machine Learning: The Art and Science of Algorithms that Make Sense of Data', Cambridge University Press, 2012

COURSE OUTCOMES (CO)

CO1	To understand the basics of AI, various subsets and applications.
CO2	To understand the concept of AI expert systems and the structure of the fuzzy
	Based expert system.
CO3	To understand the structure of the various supervised learning networks.
CO4	To understand the structure of the various unsupervised and deep learning
	networks.
CO5	To understand and implement the concept of the AL / ML algorithms for real time

CO5 To understand and implement the concept of the AI / ML algorithms for real time applications.

Course					Prog	ram	Outco	omes					PSO					
Outcomes	а	b	С	d	е	f	g	h	i	j	k		1	2	3	4		
CO1	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1		
CO2	2	2	2	3	3	1	1	2	1	2	1	2	1	1	1	1		
CO3	2	2	2	3	3	1	1	2	1	2	1	2	1	1	1	1		
CO4	2	2	2	3	3	1	1	2	1	2	1	2	1	1	1	1		
C05	3	3	3	3	3	2	2	3	2	3	3	2	1	1	1	1		

PE1252	ELECTROMAGNETIC FIELD COMPUTATION AND MODELLING	L	т	Ρ	С
		3	0	0	3
Ohiostiuss					
Objectives	be fundementale of Electromegratic Field Theory				
 To provide analytical a To impart i field proble 		rom	nagn	etic	
To introduc	e the concept of mathematical modeling and design of electrica	l ap	para	itus.	
UNIT – I	INTRODUCTION				9
Continuity equ	sic field theory – Maxwell's equations – Constitutive rela Jations – Laplace, Poisson and Helmholtz equation – princ prce/torque calculation				
UNIT – II	BASIC SOLUTION METHODS FOR FIELD EQUATIONS				9
Finite Differend	able separable method – Method of images, solution by numer ce Method.	ical	met	.1100	
UNIT – III	FORMULATION OF FINITE ELEMENT METHOD (FEM)				9
	mulation – Energy minimization – Discretization – Shape functed and axial symmetry problems.	tion	s –S	tiffn	ess
UNIT – IV	COMPUTATION OF BASIC QUANTITIES USING FEM PACKAGES	5			9
•	s – Energy stored in Electric Field – Capacitance – Magnetic Field Force – Torque – Skin effect – Resistance.	d — L	.inke	ed Fl	ux
UNIT – V	DESIGN APPLICATIONS				9
Design of Insul	ators – Cylindrical magnetic actuators – Transformers – Rotating	g ma	hchir	nes.	
	Total P	erio	ds:	4	5

- 1. Matthew. N.O. Sadiku, 'Elements of Electromagnetics', Fourth Edition, Oxford University Press, First Indian Edition2007
- 2. K. J. Binns, P. J. Lawrenson and C.W Trowbridge, 'The analytical and numerical solution of Electric and magnetic fields', John Wiley & Sons, 1993.
- 3. Nicola Biyanchi, 'Electrical Machine analysis using Finite Elements', Taylor and Francis Group, CRC Publishers, 2005.
- 4. Nathan Ida and Joao P. A. Bastos, 'Electromagnetics and calculation of fields', Springer Verlage, 1992.
- 5. S. J. Salon, 'Finite Element Analysis of Electrical Machines' Kluwer Academic Publishers, London, 1995, distributed by TBH Publishers & Distributors, Chennai, India
- 6. Peter P. Silvester and Ronald L. Ferrari, 'Finite Elements for Electrical Engineers' Cambridge University press, 1983.

Course	e Outcomes (CO)						
CO1	Ability to understand the fundamental concept of electromagnetic field theory.						
CO2 Ability to provide basic solution methodology for field equations.							
CO3	Ability to formulate the FEM method for symmetry problems.						
CO4	Ability to understand the basic quantities of field theory by using FEM package.						
CO5	Apply the concepts in the design of transformer and rotating machines						

Course					Prog	ram	Outco	omes					PSO				
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4	
CO1	3	3	2	1	1	1	1	1	1	1	1	3	3	1	3	1	
CO2	3	3	2	2	1	1	1	1	1	1	1	3	3	1	3	1	
CO3	3	3	3	2	1	1	1	1	1	1	1	3	3	1	3	1	
CO4	3	3	3	2	1	1	1	1	1	1	1	3	3	1	3	2	
C05	3	3	3	2	1	1	1	1	2	2	1	3	3	1	3	2	

ГР
0 0
d Pov
er, SE r, Boc
sibility ck–Bc onver
Based ntrolle er, Bo
on, St ed Or
ectron
20

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119 (An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

- 1. Hebertt Sira–Ramírez, Ramón Silva–Ortigoza, 'Control Design Techniques in Power Electronics Devices', Springer, 2012.
- 2. Mahesh Patil, Pankaj Rodey, 'Control Systems for Power Electronics: A Practical Guide', Springer India, 2015.
- 3. Blaabjerg José Rodríguez, 'Advanced and Intelligent Control in Power Electronics and Drives', Springer, 2014
- 4. Enrique Acha, Vassilios Agelidis, Olimpo Anaya, TJE Miller, 'Power Electronic Control in Electrical Systems', Newnes, 2002
- 5. Marija D. Aranya Chakrabortty, Marija, 'Control and Optimization Methods for Electric Smart Grids', Springer, 2012.

Course	e Outcomes (CO)
CO1	Ability to understand and model the different types of DC–DC power converters.
CO2	Ability to gain knowledge on sliding mode controller design.
CO3	Ability to understand an overview on modern linear control strategies for power
	electronics devices
CO4	Ability to understand an overview on modern nonlinear control strategies for power
	electronics devices
CO5	Ability to model modern power electronic converters for industrial applications and
	to design appropriate controllers for modern power electronics devices.

Course					Prog	ram	Outco	omes						PS	50	
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4
CO1	3	3	3	2	1	1	1	1	1	1	3	3	3	2	3	1
CO2	3	3	3	2	1	1	1	1	1	1	3	3	3	2	3	2
CO3	3	3	3	2	2	1	1	1	1	1	2	3	3	2	3	1
CO4	3	3	3	2	2	1	1	1	1	1	2	3	3	2	3	2
C05	3	3	3	2	2	1	1	1	1	1	2	3	3	2	3	2

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119

Objectives • To provide an overview of the control system and converter control methodologies • To provide an insight to the analog controllers generally used in practice • To impart basic knowledge about digital controllers. • To study on the driving techniques, isolation requirements, signal conditioning and protection methods • To implement an analog and a digital controller on a converter UNIT - 1 CONTROL SYSTEM-OVERVIEW 9 Feedback and Feed-forward control, Right Half Plane Zero, Gain margin and Phase Margin, Stability, Analysis and Transfer function of P, PI, PD and PID controllers and its effects. Voltage mode control, Peak Current mode Control, Average Current mode Control for Converters – Need, advantages and disadvantages. 9 Major components of a controller – Op-Amp based PI and PID controller – Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3854. 9 Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PVM, Analog Comparators for instantaneous over current detection, Interrupts, Discret PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation. 9 Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedb	PE1254	ANALOG AND DIGITAL CONTROLLERS	L	Т	Ρ	С
 To provide an overview of the control system and converter control methodologies To provide an insight to the analog controllers generally used in practice To impart basic knowledge about digital controllers. To study on the driving techniques, isolation requirements, signal conditioning and protection methods To implement an analog and a digital controller on a converter UNIT – I CONTROL SYSTEM–OVERVIEW 9 Feedback and Feed–forward control, Right Half Plane Zero, Gain margin and Phase Margin, Stability, Analysis and Transfer function of P, PI, PD and PID controllers and its effects. Voltage mode control, Peak Current mode Control, Average Current mode Control for Converters – Need, advantages and disadvantages. UNIT – II ANALOG CONTROLLERS 9 Major components of a controller – Op–Amp based PI and PID controller – Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3854. UNIT – III DIGITAL CONTROLLERS 9 Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation. UNIT – IV SIGNAL CONDITIONING, DRIVER, ISOLATION AND PROTECTION 9 Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps			3	0	0	3
 To provide an overview of the control system and converter control methodologies To provide an insight to the analog controllers generally used in practice To impart basic knowledge about digital controllers. To study on the driving techniques, isolation requirements, signal conditioning and protection methods To implement an analog and a digital controller on a converter UNIT – I CONTROL SYSTEM–OVERVIEW Feedback and Feed–forward control, Right Half Plane Zero, Gain margin and Phase Margin, Stability, Analysis and Transfer function of P, PI, PD and PID controllers and its effects. Voltage mode control, Peak Current mode Control, Average Current mode Control for Converters – Need, advantages and disadvantages. UNIT – II ANALOG CONTROLLERS Major components of a controller – Op–Amp based PI and PID controller – Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3524, Peak Current mode controller design using UC3524, Peak Current mode controller design using UC3854. UNIT – III DIGITAL CONTROLLERS Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation. UNIT – IV SIGNAL CONDITIONING, DRIVER, ISOLATION AND PROTECTION Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need fo	Objectives					
 To provide an insight to the analog controllers generally used in practice To impart basic knowledge about digital controllers. To study on the driving techniques, isolation requirements, signal conditioning and protection methods To implement an analog and a digital controller on a converter UNIT – I CONTROL SYSTEM-OVERVIEW P Feedback and Feed-forward control, Right Half Plane Zero, Gain margin and Phase Margin, Stability, Analysis and Transfer function of P, PI, PD and PID controllers and its effects. Voltage mode control, Peak Current mode Control, Average Current mode Control for Converters – Need, advantages and disadvantages. UNIT – II ANALOG CONTROLLERS Major components of a controller – Op-Amp based PI and PID controller – Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3854. UNIT – III DIGITAL CONTROLLERS Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation. UNIT – IV SIGNAL CONDITIONING, DRIVER, ISOLATION AND PROTECTION Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op-Amps for signal conditioning, Single and dual supply op-amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensi	-	an overview of the control system and converter control method	dolo	gies		
 To impart basic knowledge about digital controllers. To study on the driving techniques, isolation requirements, signal conditioning and protection methods To implement an analog and a digital controller on a converter UNIT – I CONTROL SYSTEM–OVERVIEW 9 Feedback and Feed–forward control, Right Half Plane Zero, Gain margin and Phase Margin, Stability, Analysis and Transfer function of P, PI, PD and PID controllers and its effects. Voltage mode control, Peak Current mode Control, Average Current mode Control for Converters – Need, advantages and disadvantages. UNIT – II ANALOG CONTROLLERS 9 Major components of a controller – Op–Amp based PI and PID controller – Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3854. UNIT – III DIGITAL CONTROLLERS 9 Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation. Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and 				0.00		
To study on the driving techniques, isolation requirements, signal conditioning and protection methods To implement an analog and a digital controller on a converter UNIT – I CONTROL SYSTEM–OVERVIEW 9 Feedback and Feed–forward control, Right Half Plane Zero, Gain margin and Phase Margin, Stability, Analysis and Transfer function of P, PI, PD and PID controllers and its effects. Voltage mode control, Peak Current mode Control, Average Current mode Control for Converters – Need, advantages and disadvantages. UNIT – II ANALOG CONTROLLERS 9 Major components of a controller – Op–Amp based PI and PID controller – Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3854. UNIT – III DIGITAL CONTROLLERS 9 Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation. UNIT – IV SIGNAL CONDITIONING, DRIVER, ISOLATION AND PROTECTION 9 Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and						
protection methods • To implement an analog and a digital controller on a converter UNIT - I CONTROL SYSTEM-OVERVIEW 9 Feedback and Feed-forward control, Right Half Plane Zero, Gain margin and Phase Margin, Stability, Analysis and Transfer function of P, PI, PD and PID controllers and its effects. Voltage mode control, Peak Current mode Control, Average Current mode Control for Converters – Need, advantages and disadvantages. 9 Major components of a controller – Op-Amp based PI and PID controller – Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3854. 9 Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation. 9 Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op-Amps for signal conditioning, Single and dual supply op-amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and			ndit	ioniı	ng a	and
To implement an analog and a digital controller on a converter UNIT - 1 CONTROL SYSTEM-OVERVIEW 9 Feedback and Feed-forward control, Right Half Plane Zero, Gain margin and Phase Margin, Stability, Analysis and Transfer function of P, PI, PD and PID controllers and its effects. Voltage mode control, Peak Current mode Control, Average Current mode Control for Converters - Need, advantages and disadvantages. UNIT - II ANALOG CONTROLLERS 9 Major components of a controller - Op-Amp based PI and PID controller - Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3854. UNIT - III DIGITAL CONTROLLERS 9 Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation. UNIT - IV SIGNAL CONDITIONING, DRIVER, ISOLATION AND PROTECTION 9 Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op-Amps for signal conditioning, Single and dual supply op-amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with botstrap power supply, Vce sat sensing, CT based Device current sensing and	-				0	
UNIT - I CONTROL SYSTEM-OVERVIEW 9 Feedback and Feed-forward control, Right Half Plane Zero, Gain margin and Phase Margin, Stability, Analysis and Transfer function of P, PI, PD and PID controllers and its effects. Voltage mode control, Peak Current mode Control, Average Current mode Control for Converters – Need, advantages and disadvantages. 9 UNIT - II ANALOG CONTROLLERS 9 Major components of a controller – Op-Amp based PI and PID controller – Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3854. 9 Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation. 9 Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and						
Feedback and Feed-forward control, Right Half Plane Zero, Gain margin and Phase Margin, Stability, Analysis and Transfer function of P, PI, PD and PID controllers and its effects. Voltage mode control, Peak Current mode Control, Average Current mode Control for Converters – Need, advantages and disadvantages. UNIT – II ANALOG CONTROLLERS 9 Major components of a controller – Op–Amp based PI and PID controller – Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3854. UNIT – III DIGITAL CONTROLLERS 9 Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface 9 Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation. 9 Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and						
Stability, Analysis and Transfer function of P, PI, PD and PID controllers and its effects. Voltage mode control, Peak Current mode Control, Average Current mode Control for Converters – Need, advantages and disadvantages. UNIT – II ANALOG CONTROLLERS 9 Major components of a controller – Op-Amp based PI and PID controller – Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3854. 9 Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation. 9 Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Toem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and	UNIT – I	CONTROL SYSTEM–OVERVIEW				9
Voltage mode control, Peak Current mode Control, Average Current mode Control for Converters – Need, advantages and disadvantages. UNIT – II ANALOG CONTROLLERS 9 Major components of a controller – Op–Amp based PI and PID controller – Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3524. UNIT – III DIGITAL CONTROLLERS 9 Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation. 9 Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and shorts for current sensing and conditioning of the proves current sensing and sensing.	Feedback and	Feed-forward control, Right Half Plane Zero, Gain margin and	Pha	se N	Mar	gin,
Converters – Need, advantages and disadvantages. UNIT – II ANALOG CONTROLLERS 9 Major components of a controller – Op–Amp based PI and PID controller – Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3854. UNIT – III DIGITAL CONTROLLERS 9 Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation. 9 Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and	Stability, Anal	ysis and Transfer function of P, PI, PD and PID controllers a	nd	its e	effe	cts.
UNIT – IIANALOG CONTROLLERS9Major components of a controller – Op–Amp based PI and PID controller – Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3854.9UNIT – IIIDIGITAL CONTROLLERS9Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation.9Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and	Voltage mode	control, Peak Current mode Control, Average Current mod	de (Cont	rol	for
Major components of a controller – Op–Amp based PI and PID controller – Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3854.UNIT – IIIDIGITAL CONTROLLERS9Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation.9Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and	Converters – N	leed, advantages and disadvantages.				
Major components of a controller – Op–Amp based PI and PID controller – Proportional, Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3854.UNIT – IIIDIGITAL CONTROLLERS9Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation.9Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and						
Integral and Differential gains in terms of Resistance and Capacitance, Error Amplifiers, PWM generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3854.UNIT – IIIDIGITAL CONTROLLERS9Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation.9Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with botstrap power supply, Vce sat sensing, CT based Device current sensing and	UNIT – II	ANALOG CONTROLLERS				9
generator using Ramp or Triangular generator and comparator, and Driver, Voltage mode controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3854.UNIT – IIIDIGITAL CONTROLLERS9Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation.9Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, ned for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with botstrap power supply, Vce sat sensing, CT based Device current sensing and	Major compoi	nents of a controller – Op–Amp based PI and PID controller	– Pr	оро	rtio	nal,
controller design using UC3524, Peak Current mode controller design using UC3842, Average Current mode controller design using UC3854.UNIT – IIIDIGITAL CONTROLLERS9Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation.9Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, ned for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with botstrap power supply, Vce sat sensing, CT based Device current sensing and	Integral and D	ifferential gains in terms of Resistance and Capacitance, Error Ar	npli	fiers	, PV	٧M
Current mode controller design using UC3854. UNIT – III DIGITAL CONTROLLERS 9 Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation. 9 UNIT – IV SIGNAL CONDITIONING, DRIVER, ISOLATION AND PROTECTION 9 Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with botstrap power supply, Vce sat sensing, CT based Device current sensing and	generator usir	ng Ramp or Triangular generator and comparator, and Driver,	Vol	tage	e mo	ode
UNIT - IIIDIGITAL CONTROLLERS9Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control - A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation.9UNIT - IVSIGNAL CONDITIONING, DRIVER, ISOLATION AND PROTECTION Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op-Amps for signal conditioning, Single and dual supply op-amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and	controller desi	gn using UC3524, Peak Current mode controller design using UC	384	2, A	vera	age
Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation.9UNIT – IVSIGNAL CONDITIONING, DRIVER, ISOLATION AND PROTECTION9Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and	Current mode	controller design using UC3854.				
Micro Controllers and Digital Signal Controllers for Converter Control Application, Interface Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation.9UNIT – IVSIGNAL CONDITIONING, DRIVER, ISOLATION AND PROTECTION9Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and						
Modules for Converter Control – A/D, Capture, Compare and PWM, Analog Comparators for instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation.Implementation, AlgorithmUNIT – IVSIGNAL CONDITIONING, DRIVER, ISOLATION AND PROTECTION9Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and	UNIT – III	DIGITAL CONTROLLERS				9
instantaneous over current detection, Interrupts, Discrete PI and PID equations, Algorithm for PI and PID implementation, Example Code for PWM generation.UNIT – IVSIGNAL CONDITIONING, DRIVER, ISOLATION AND PROTECTION9Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and	Micro Control	ers and Digital Signal Controllers for Converter Control Applica	atior	n, In	terfa	ace
for PI and PID implementation, Example Code for PWM generation. UNIT – IV SIGNAL CONDITIONING, DRIVER, ISOLATION AND PROTECTION 9 Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with botstrap power supply, Vce sat sensing, CT based Device current sensing and	Modules for C	onverter Control – A/D, Capture, Compare and PWM, Analog Co	omp	arat	ors	for
UNIT – IVSIGNAL CONDITIONING, DRIVER, ISOLATION AND PROTECTION9Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and	instantaneous	over current detection, Interrupts, Discrete PI and PID equati	ons,	Alg	orit	hm
Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and	for PI and PID	implementation, Example Code for PWM generation.				
Voltage feedback sensing circuits, Hall effect sensors and Shunts for current feedback sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and						
sensing, Low offset Op–Amps for signal conditioning, Single and dual supply op–amps, Totem pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and	UNIT – IV	SIGNAL CONDITIONING, DRIVER, ISOLATION AND PROTECTIO	N			9
pole drivers, need for isolated drivers, optically isolated drivers, Low side drivers, High side drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and	Voltage feedb	ack sensing circuits, Hall effect sensors and Shunts for cur	ren	t fe	edb	ack
drivers with bootstrap power supply, Vce sat sensing, CT based Device current sensing and	sensing, Low o	ffset Op–Amps for signal conditioning, Single and dual supply op	o–ar	nps,	Tot	em
	pole drivers, r	eed for isolated drivers, optically isolated drivers, Low side dri	vers	, Ні	gh s	ide
	drivers with b	ootstrap power supply, Vce sat sensing, CT based Device curre	nt s	ensi	ng a	and
pulse blocking.	pulse blocking	·				
			_		_	_

Analog and Digital Controller Design for Buck Converter – Power circuit transfer function and bode plot, PI controller bode plot, combined bode plot with required Gain and Phase margins, Implementation of Analog controller and Digital controller.

Total Periods: 45

9

Text Books:

- 1. I.J. Nagrath and M. Gopal, 'Control Systems Engineering', New Age International Publishers, 6th edition, 2018.
- 2. George Ellis, 'Control System Design Guide', Elsevier, (Fourth Edition), 2012.
- 3. Ioan Doré Landau, Gianluca Zito, 'Digital Control Systems: Design, Identification and Implementation', Springer, 2010.

- 1. TI Application notes, Reference Manuals and Data sheets.
- 2. Agilent Data Sheets.
- 3. Microchip application notes, Reference Manuals and Data sheets.

Cours	se Outcomes (CO)
CO1	Acquire knowledge on control system and converter control methodologies
CO2	Understand the analog controllers generally used in practice
CO3	Study the embedded Processers for Digital Control
CO4	Understand the driving techniques, isolation requirements, signal and conditioning
	protection methods
CO5	Implementing an analog and a digital controller on a converter

Course					Pro	gram	Outc	omes	5				PSO					
Outcomes	а	b	С	d	е	f	g	h	i	j	k		1	2	3	4		
CO1	З	2	3	2	1	3	2	1	2	1	1	3	3	2	3	2		
CO2	3	3	3	2	1	3	2	1	2	1	2	3	3	2	3	2		
CO3	3	3	3	2	1	3	2	1	2	1	2	3	3	2	3	3		
CO4	3	3	2	1	1	3	2	1	2	1	2	3	3	2	3	1		
CO5	3	2	3	1	1	3	2	1	2	1	3	3	3	2	3	1		

PE1255	FLEXIBLE AC TRANSMISSION SYSTEMS	L	Т	Ρ	С
		3	0	0	3
OBJECTIVES	ms in AC transmission systems and astablish the Flavible A	C +r		micc	
 The proble systems. 	ms in AC transmission systems and establish the Flexible AC		drisi	11155	101
•	ion and control of SVC and its applications to enhance the	≏ sta	abili	tv a	nd
damping.				cy c	
	nt modes of operation TCSC and to model it for power flov	w ar	nd s	tabi	lity
studies.					-
• The basic of	peration and control of voltage source converter-based FACTS c	cont	rolle	ers.	
• The advance	ed FACTS controllers				
UNIT – I	INTRODUCTION				9
•	er control in electrical power transmission lines – loa			•	
•	Uncompensated transmission line – shunt and series compensater $(S)(C)$. Thurister Controlled Series Conset				ISIC
concepts of Sta	tic Var Compensator (SVC) – Thyristor Controlled Series Capacit	.or (1030	-)	
UNIT – II	SHUNT COMPENSATION USING STATIC VAR COMPENSATOR				
					9
Voltage contro		flue	nce	of	
-	I by SVC – Advantages of slope in dynamic characteristics – In				SVC
on system volt	l by SVC – Advantages of slope in dynamic characteristics – In age – Design of SVC voltage regulator – Modelling of SVC for p	owe	er flo	ow a	SVC
on system volt fast transient	I by SVC – Advantages of slope in dynamic characteristics – In age – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability -	owe	er flo	ow a	SVC
on system volt fast transient	l by SVC – Advantages of slope in dynamic characteristics – In age – Design of SVC voltage regulator – Modelling of SVC for p	owe	er flo	ow a	and
on system volt fast transient	I by SVC – Advantages of slope in dynamic characteristics – In age – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability -	owe – St	er flo ead	ow a y st	SVC and ate
on system volt fast transient power transfer UNIT – III	I by SVC – Advantages of slope in dynamic characteristics – In- age – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, C	oowe - St GTO	er flo ead [.] A	ow a y st ND	SVC anc ate
on system volt fast transient power transfer UNIT – III Operation of	I by SVC – Advantages of slope in dynamic characteristics – In age – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, CAPPLICATIONS	oowe - St GTO TCS(er flo ead A	ow a y st ND 'aria	SVC anc ate 9 ble
on system volt fast transient power transfer UNIT – III Operation of reactance mod of the system	I by SVC – Advantages of slope in dynamic characteristics – In- age – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, C APPLICATIONS the TCSC – Different modes of operation – Modelling of	GTO TCSC	er flo ead A C, V prov	ow a y st ND aria	SVC and ate ble ent
on system volt fast transient power transfer UNIT – III Operation of reactance mod	 I by SVC – Advantages of slope in dynamic characteristics – In age – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, C APPLICATIONS the TCSC – Different modes of operation – Modelling of el– Modelling for Power Flow and stability studies. Applications 	GTO TCSC	er flo ead A C, V prov	ow a y st ND aria	SVC and ate ble ent
on system volt fast transient power transfer UNIT – III Operation of reactance mod of the system applications.	 I by SVC – Advantages of slope in dynamic characteristics – In age – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, CAPPLICATIONS the TCSC – Different modes of operation – Modelling of el– Modelling for Power Flow and stability studies. Applications: stability limit – Enhancement of system damping, GTO Characteristics – International Stability limit – Enhancement of system damping, GTO Characteristics – International Stability limit – Enhancement of system damping, GTO Characteristics – International Stability limit – Enhancement of system damping, GTO Characteristics – International Stability limit – Enhancement of system damping, GTO Characteristics – International Stability limit – Enhancement of system damping, GTO Characteristics – International Stability limit – Enhancement of system damping, GTO Characteristics – International Stability limit – Enhancement of System damping, GTO Characteristics – International Stability limit – Enhancement of System damping, GTO Characteristics – International Stability limit – Enhancement of System damping, GTO Characteristics – International Stability limit – International Stability limit	GTO TCSC	er flo ead A C, V prov	ow a y st ND aria	ble anc
on system volt fast transient power transfer UNIT – III Operation of reactance mod of the system applications. UNIT – IV	 I by SVC – Advantages of slope in dynamic characteristics – In age – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, C APPLICATIONS the TCSC – Different modes of operation – Modelling of el– Modelling for Power Flow and stability studies. Applications stability limit – Enhancement of system damping, GTO Char VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS 	GTO TCSC : Impacte	A C, V Proveristi	ow a st y st ND	svC anc ate ble ent anc 9
on system volt fast transient power transfer UNIT – III Operation of reactance mod of the system applications. UNIT – IV Static Synchron	 I by SVC – Advantages of slope in dynamic characteristics – In age – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, CAPPLICATIONS the TCSC – Different modes of operation – Modelling of el– Modelling for Power Flow and stability studies. Applications: stability limit – Enhancement of system damping, GTO Characteristics – Modelling for Converter Based Facts ControlLERS VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS 	GTO GTO TCS(: Im acte Char	A C, V proveristi	y st ND aria vem ics a	svC anc ate ble ent anc 9 ics
on system volt fast transient power transfer UNIT – III Operation of reactance mod of the system applications. UNIT – IV Static Synchron Applications: S	 I by SVC – Advantages of slope in dynamic characteristics – Image – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, CAPPLICATIONS the TCSC – Different modes of operation – Modelling of el– Modelling for Power Flow and stability studies. Applications stability limit – Enhancement of system damping, GTO Char VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS nous Compensator (STATCOM) – Principle of operation – V–I Cateady state power transfer – Enhancement of transient stability 	GTO GTO TCSC : Im acte	A C, V proveristi	y st ND aria ics a erist vent	ble and ate ble ent and 9 ics.
on system volt fast transient power transfer UNIT – III Operation of reactance mod of the system applications. UNIT – IV Static Synchron Applications: S of voltage insta	 I by SVC – Advantages of slope in dynamic characteristics – Image – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, CAPPLICATIONS the TCSC – Different modes of operation – Modelling of el– Modelling for Power Flow and stability studies. Applications: stability limit – Enhancement of system damping, GTO Char VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS nous Compensator (STATCOM) – Principle of operation – V–I Cateady state power transfer – Enhancement of transient stability ability. SSSC – Operation of SSSC and the control of power flow 	GTO GTO TCSC : Im acte	A C, V proveristi	y st ND aria ics a erist vent	ble anc ate ble anc 9 ics
on system volt fast transient power transfer UNIT – III Operation of reactance mod of the system applications. UNIT – IV Static Synchron Applications: S of voltage insta	 I by SVC – Advantages of slope in dynamic characteristics – Image – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, CAPPLICATIONS the TCSC – Different modes of operation – Modelling of el– Modelling for Power Flow and stability studies. Applications stability limit – Enhancement of system damping, GTO Char VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS nous Compensator (STATCOM) – Principle of operation – V–I Cateady state power transfer – Enhancement of transient stability 	GTO GTO TCSC : Im acte	A C, V proveristi	y st ND aria ics a erist vent	ble and ate ble ent and 9 ics.
on system volt fast transient power transfer UNIT – III Operation of reactance mod of the system applications. UNIT – IV Static Synchron Applications: S of voltage insta SSSC in load flo	I by SVC – Advantages of slope in dynamic characteristics – Image – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, CAPPLICATIONS the TCSC – Different modes of operation – Modelling of el– Modelling for Power Flow and stability studies. Applications: stability limit – Enhancement of system damping, GTO Char VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS nous Compensator (STATCOM) – Principle of operation – V–I C teady state power transfer – Enhancement of transient stability ability. SSSC – Operation of SSSC and the control of power flow ow and transient stability studies.	GTO GTO TCSC : Im acte Char y – M	A C, V proveristi	ow a y st y st ND aria vem ics a erist vent Illing	ble ent ics ior
on system volt fast transient power transfer UNIT – III Operation of reactance mod of the system applications. UNIT – IV Static Synchron Applications: S of voltage insta	 I by SVC – Advantages of slope in dynamic characteristics – Image – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, CAPPLICATIONS the TCSC – Different modes of operation – Modelling of el– Modelling for Power Flow and stability studies. Applications: stability limit – Enhancement of system damping, GTO Char VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS nous Compensator (STATCOM) – Principle of operation – V–I Cateady state power transfer – Enhancement of transient stability ability. SSSC – Operation of SSSC and the control of power flow 	GTO GTO TCSC : Im acte Char y – M	er flo ead A C, V prov eristi	ow a y st y st ND aria vem ics a erist vent Illing	ble ent ics ior
on system volt fast transient power transfer UNIT – III Operation of reactance mod of the system applications. UNIT – IV Static Synchron Applications: S of voltage insta SSSC in load flo	 I by SVC – Advantages of slope in dynamic characteristics – Image – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, CAPPLICATIONS the TCSC – Different modes of operation – Modelling of el– Modelling for Power Flow and stability studies. Applications: stability limit – Enhancement of system damping, GTO Char VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS nous Compensator (STATCOM) – Principle of operation – V–I Cady state power transfer – Enhancement of transient stability ability. SSSC – Operation of SSSC and the control of power flow ow and transient stability studies. 	GTO GTO TCSC : Im acte Char y – M EN	A A C, V proveristi Prevention lode	ow a y st y st ND aria vem ics a erist vent Illing	ble ent ics jor g of
on system volt fast transient power transfer UNIT – III Operation of reactance mod of the system applications. UNIT – IV Static Synchron Applications: S of voltage insta SSSC in load flo UNIT – V Interline DVR (I by SVC – Advantages of slope in dynamic characteristics – Im age – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, CAPPLICATIONS the TCSC – Different modes of operation – Modelling of el– Modelling for Power Flow and stability studies. Applications: stability limit – Enhancement of system damping, GTO Char VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS nous Compensator (STATCOM) – Principle of operation – V–I C teady state power transfer – Enhancement of transient stability ability. SSSC – Operation of SSSC and the control of power flow ow and transient stability studies. ADVANCED CONTROLLERS AND COORDINATION BETWER CONTROLLERS 	GTO GTO TCSC : Im acte Char y – M EN	er flo ead A C, V proveristi racto Prev lode FAC	y st y st ND aria ics a erist vent Illing	ble ent and g ble ent and g of g g g g g g g g g
on system volt fast transient power transfer UNIT – III Operation of reactance mod of the system applications. UNIT – IV Static Synchron Applications: S of voltage insta SSSC in load flo UNIT – V Interline DVR ((IPFC) – Unified	 I by SVC – Advantages of slope in dynamic characteristics – Im age – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, CAPPLICATIONS the TCSC – Different modes of operation – Modelling of el– Modelling for Power Flow and stability studies. Applications: stability limit – Enhancement of system damping, GTO Char VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS nous Compensator (STATCOM) – Principle of operation – V–I C teady state power transfer – Enhancement of transient stability ability. SSSC – Operation of SSSC and the control of power flow ow and transient stability studies. ADVANCED CONTROLLERS AND COORDINATION BETWER CONTROLLERS IDVR) – Unified Power flow controller (UPFC) – Interline power 	GTO TCSC : Impacte Char y – M EN flow	A A C, V proveristi eristi Prevention ode FAC	ow a y st y st ND aria aria vem ics a erist vent Illing CTS ntro /C-S	svC anc ate ate ble ent anc g of g of g of g of g of g of g of g of
on system volt fast transient power transfer UNIT – III Operation of reactance mod of the system applications. UNIT – IV Static Synchron Applications: S of voltage insta SSSC in load flo UNIT – V Interline DVR ((IPFC) – Unified interaction –	 I by SVC – Advantages of slope in dynamic characteristics – In age – Design of SVC voltage regulator – Modelling of SVC for p stability – Applications: Enhancement of transient stability – Enhancement of power system damping. THYRISTOR CONTROLLER BASED SERIES CAPACITOR, CAPPLICATIONS the TCSC – Different modes of operation – Modelling of el– Modelling for Power Flow and stability studies. Applications: stability limit – Enhancement of system damping, GTO Char VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS nous Compensator (STATCOM) – Principle of operation – V–I (teady state power transfer – Enhancement of transient stability ability. SSSC – Operation of SSSC and the control of power flow ow and transient stability studies. ADVANCED CONTROLLERS AND COORDINATION BETWER CONTROLLERS IDVR) – Unified Power flow controller (UPFC) – Interline power of Power quality conditioner (UPQC). FACTS Controller interaction 	GTO TCSC : Impacte Char y – M EN flow ons tec	A A C, V proveristi eristi eristi eristi Prevente lode FAC	ow a y st y st ND aria aria vem ics a erist vent Illing CTS ntro /C-S	SVC and ate 9 ble ent and 9 ics. ion g of 9 ller SVC

TEXT BOOKS:

- 1. R. Mohan Mathur, Rajiv K. Varma, 'Thyristor–Based Facts Controllers for Electrical Transmission Systems', IEEE press and John Wiley & Sons, Inc, 2011.
- 2. Narain G. Hingorani, 'Understanding FACTS Concepts and Technology of Flexible AC Transmission Systems', Standard Publishers Distributors, Delhi–110006, 2011.

- 1. K.R. Padiyar, 'FACTS Controllers in Power Transmission and Distribution', New Age International (P) Limited, Publishers, New Delhi, 2008.
- 2. V. K. Sood, 'HVDC and FACTS controllers Applications of Static Converters in Power System', April 2004, Kluwer Academic Publishers, 2004.

COURS	E OUTCOMES (CO)
CO1	Analyse the reactive power flow in transmission networks and understand the
	importance of voltage stability
CO2	Analyse and understand the operation of shunt compensated devices namely SVC
CO3	Analyse and understand the operation of series compensated devices namely TCSC
	and GTO
CO4	Acquire knowledge about the effectiveness of active compensation and usage of
	SSSC
CO5	Acquire knowledge about new age compensators and their interaction with the
	system.

Course		Program Outcomes													PSO				
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4			
CO1	3	3	2	2	1	1	1	1	1	1	1	1	3	1	2	1			
CO2	3	3	3	1	1	1	1	1	1	1	1	1	3	2	1	1			
CO3	3	2	2	3	1	1	1	1	1	1	1	1	3	3	1	1			
CO4	2	3	2	1	2	1	3	1	1	1	1	1	2	2	1	1			
C05	3	1	3	1	3	1	1	1	1	1	1	3	1	3	1	1			

PE1256	MODERN RECTIFIERS AND RESONANT CONVERTERS	L	Т	Ρ	С
		3	0	0	3

Objectives

- To gain knowledge about the harmonic's standards and operation of rectifiers in CCM & DCM.
- To analyze and design power factor correction rectifiers for UPS applications.
- To know the operation of resonant converters for SMPS applications.
- To carry out dynamic analysis of DC– DC Converters.
- To introduce the source current shaping methods for rectifiers

UNIT – I POWER SYSTEM HARMONICS & LINECOMMUTATEDRECTIFIERS	9
Average power - RMS value of waveform - Effect of Power factor - Current and voltage	ge
harmonics - Effect of source and load impedance - AC line current harmonic standar	ds
IEC1000 - IEEE 519 - CCM and DCM operation of single-phase full wave rectifier - Behavi	ior
of full wave rectifier for large and small values of capacitance – CCM and DCM operation	of
three phase full wave restifier 12 pulse convertors. Harmonic tran filters	

three phase full wave rectifier – 12 pulse converters – Harmonic trap filters

UNIT – II F

PULSE WIDTH MODULATED RECTIFIERS

Properties of Ideal single-phase rectifiers – Realization of nearly ideal rectifier – Singlephase converter systems incorporating ideal rectifiers – Losses and efficiency in CCM high quality rectifiers – single-phase PWM rectifier – PWM concepts – Device selection for rectifiers – IGBT based PWM rectifier, comparison with SCR based converters with respect to harmonic content – Applications of rectifiers.

UNIT – III RESONANTCONVERTERS

Soft Switching – Classification of resonant converters – Quasi resonant converters – Basics of ZVS and ZCS – Half wave and full wave operation (qualitative treatment) – Multi resonant converters – Operation and analysis of ZVS and ZCS multi resonant converter – Zero voltage transition PWM converters – Zero current transition PWM converters

DYNAMIC ANALYSIS OFSWITCHINGCONVERTERS

Review of linear system analysis – State Space Averaging – Basic State Space Average Model – State Space Averaged model for an ideal Buck Converter, ideal Boost Converter, ideal Buck Boost Converter and an ideal Cuk Converter. Pulse Width modulation – Voltage Mode PWM Scheme – Current Mode PWM Scheme – Design of PI controller.

UNIT – V SOURCE CURRENT SHAPINGOF RECTIFIERS

Need for current shaping – Power factor – Functions of current shaper – Input current shaping methods – Passive shaping methods – Input inductor filter – Resonant input filter – Active methods – Boost rectifier employing peak current control – Average current control – Hysteresis control – Nonlinear carrier control.

Total Periods: 45

9

9

9

9

- 1 Robert W. Erickson and Dragon Maksimovic, 'Fundamentals of Power Electronics', Second Edition, Springer science and Business media, 2001.
- 2 William Shepherd and Li zhang, 'Power Converters Circuits', CRC Press, Taylor & Francis Group, 2019.
- 3 Simon Ang and Alejandro Oliva, 'Power Switching Converters', Taylor & Francis Group, 2010.
- 4 Andrzej M. Trzynadlowski, 'Introduction to Modern Power Electronics', John Wiley & Sons, 2016.
- 5 Marian. K. Kazimierczuk and Dariusz Czarkowski, 'Resonant Power Converters', John Wiley & Sons limited, 2011.
- 6 Keng C. Wu, 'Switch Mode Power Converters Design and Analysis', Elseveir academic press, 2006.
- 7 Abraham I. Pressman, Keith Billings and Taylor Morey, 'Switching Power Supply Design' McGraw–Hill, 2009
- 8 V. Ramanarayanan, 'Course Material on Switched Mode Power Conversion', IISC, Banglore, 2007.
- 9 Christophe P. Basso, Switch–Mode Power Supplies, McGraw–Hill, 2014.

Course Outcomes (CO)

CO1 Apply the concept of various types of rectifiers.

CO2 Simulate and design the operation of resonant converter and its importance.

CO3 Identify the importance of linear system, state space model, PI controller.

- CO4 Design the DC power supplies using advanced techniques.
- CO5 Understand the standards for supply current harmonics and its significance.

Course					Prog	ram	Outco	omes						PS	50	
Outcomes	а	b	С	d	е	f	g	h	i	j	k		1	2	3	4
CO1	3	3	3	3	3	1	3	1	1	1	1	1	3	3	3	1
CO2	3	3	3	3	3	1	3	1	1	1	1	1	3	3	3	1
CO3	3	3	3	3	3	1	3	1	1	1	1	1	3	3	3	1
CO4	3	3	4	3	3	1	3	1	1	1	1	1	3	3	3	1
C05	3	3	4	3	3	1	3	1	1	1	1	1	3	3	3	1

	ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY	LT	Ρ	С
		3 0	0	3
Ohiostiyos				
Objectives	fundamental knowledge on electromagnetic interference and ele	atron		
•	e fundamental knowledge on electromagnetic interference and ele	ctron	agn	euc
compatibi	•	ابدمما	مماهم	~ ~
•	he important techniques to control EMI and EMC. To expose the k chniques as per Indian and international standards in EMI measure		-	on
UNIT – I	INTRODUCTION			9
Definitions of	EMI/EMC - sources of EMI - Inter systems and Intra system - Co	onduc	ted a	and
	rference - Characteristics - Design for electromagnetic compatil			
	on typical noise path - EMI predictions and modelling, Cross talk			
eliminating in	terferences.			
	_			
UNIT – II	GROUNDING AND CABLING			9
Cabling - typ	es of cables, mechanism of EMI emission / coupling in cables	- Ca	pacit	tive
coupling indu	active coupling - Shielding to prevent magnetic radiation - Sh	nield	trans	sfer
impedance, G	rounding - Safety grounds - Signal grounds - Single point and mult	ipoint	grou	unc
systems hybr	id grounds - Functional ground layout - Grounding of cable sh	elds	- Gu	arc
shields - isola	ation, neutralizing transformers, shield grounding at high freque	encies	, dig	ita
grounding - E	arth measurement Methods.			
0	מונוו ווופמגעו פווופוונ ואופנווטעג.			
UNIT – III	BALANCING, FILTERING AND SHIELDING			9
UNIT – III Power supply	BALANCING, FILTERING AND SHIELDING decoupling - Decoupling filters - Amplifier filtering - High freque	•		ng -
UNIT – III Power supply EMI filters ch	BALANCING, FILTERING AND SHIELDING decoupling - Decoupling filters - Amplifier filtering - High freque naracteristics of LPF, HPF, BPF, BEF and power line filter design	ı - Cl	noice	
UNIT – III Power supply EMI filters ch capacitors, in	BALANCING, FILTERING AND SHIELDING decoupling - Decoupling filters - Amplifier filtering - High freque haracteristics of LPF, HPF, BPF, BEF and power line filter design ductors, transformers and resistors, EMC design components - Sh	n - Cl ieldin	noice g - N	ng o ea
UNIT – III Power supply EMI filters ch capacitors, in and far fields	BALANCING, FILTERING AND SHIELDING decoupling - Decoupling filters - Amplifier filtering - High freque naracteristics of LPF, HPF, BPF, BEF and power line filter design ductors, transformers and resistors, EMC design components - Sh shielding effectiveness - Absorption and reflection loss - Magnetic	n - Cl ieldin c mat	noice g - N erials	ng ea ea
UNIT – III Power supply EMI filters ch capacitors, in and far fields a shield, shie	BALANCING, FILTERING AND SHIELDING decoupling - Decoupling filters - Amplifier filtering - High freque haracteristics of LPF, HPF, BPF, BEF and power line filter design ductors, transformers and resistors, EMC design components - Sh shielding effectiveness - Absorption and reflection loss - Magnetic eld discontinuities, slots and holes, seams and joints, conduct	n - Cl ieldin c mat	noice g - N erials	ng o ear s as
UNIT – III Power supply EMI filters ch capacitors, in and far fields a shield, shie	BALANCING, FILTERING AND SHIELDING decoupling - Decoupling filters - Amplifier filtering - High freque naracteristics of LPF, HPF, BPF, BEF and power line filter design ductors, transformers and resistors, EMC design components - Sh shielding effectiveness - Absorption and reflection loss - Magnetic	n - Cl ieldin c mat	noice g - N erials	ng of ear s as
UNIT – III Power supply EMI filters ch capacitors, in and far fields a shield, shie Windows and	BALANCING, FILTERING AND SHIELDING decoupling - Decoupling filters - Amplifier filtering - High freque haracteristics of LPF, HPF, BPF, BEF and power line filter design ductors, transformers and resistors, EMC design components - Sh shielding effectiveness - Absorption and reflection loss - Magnetic eld discontinuities, slots and holes, seams and joints, conduct coatings - Grounding of shields	n - Cl ieldin c mat	noice g - N erials	ea as
UNIT – III Power supply EMI filters ch capacitors, in and far fields a shield, shie Windows and UNIT – IV	BALANCING, FILTERING AND SHIELDINGdecoupling - Decoupling filters - Amplifier filtering - High freque naracteristics of LPF, HPF, BPF, BEF and power line filter design ductors, transformers and resistors, EMC design components - Sh shielding effectiveness - Absorption and reflection loss - Magnetic eld discontinuities, slots and holes, seams and joints, conduct coatings - Grounding of shieldsEMI IN ELEMENTS AND CIRCUITS	n - Cl ieldin c mat ive g	noice g - N erials asket	ng ea s a: s s 9
UNIT – III Power supply EMI filters ch capacitors, in and far fields a shield, shie Windows and UNIT – IV Electromagne	BALANCING, FILTERING AND SHIELDING decoupling - Decoupling filters - Amplifier filtering - High freque naracteristics of LPF, HPF, BPF, BEF and power line filter design ductors, transformers and resistors, EMC design components - Sh shielding effectiveness - Absorption and reflection loss - Magnetic eld discontinuities, slots and holes, seams and joints, conduct coatings - Grounding of shields EMI IN ELEMENTS AND CIRCUITS etic emissions, noise from relays and switches, non-linearity in cir	n - Cl ieldin c mat ive g cuits,	noice g - N erials asket pass	ng ea s as s as s s 9 sive
UNIT – III Power supply EMI filters ch capacitors, in and far fields a shield, shie Windows and UNIT – IV Electromagne inter modula	BALANCING, FILTERING AND SHIELDING a decoupling - Decoupling filters - Amplifier filtering - High freque b aracteristics of LPF, HPF, BPF, BEF and power line filter design ductors, transformers and resistors, EMC design components - Sh shielding effectiveness - Absorption and reflection loss - Magnetic eld discontinuities, slots and holes, seams and joints, conduct coatings - Grounding of shields EMI IN ELEMENTS AND CIRCUITS etic emissions, noise from relays and switches, non-linearity in cir tion, transients in power supply lines, EMI from power electroni	n - Cl ieldin c mat ive g cuits,	noice g - N erials asket pass	ng ea s as s as s s 9 sive
UNIT – III Power supply EMI filters ch capacitors, in and far fields a shield, shie Windows and UNIT – IV Electromagne inter modula	BALANCING, FILTERING AND SHIELDING decoupling - Decoupling filters - Amplifier filtering - High freque naracteristics of LPF, HPF, BPF, BEF and power line filter design ductors, transformers and resistors, EMC design components - Sh shielding effectiveness - Absorption and reflection loss - Magnetic eld discontinuities, slots and holes, seams and joints, conduct coatings - Grounding of shields EMI IN ELEMENTS AND CIRCUITS etic emissions, noise from relays and switches, non-linearity in cir	n - Cl ieldin c mat ive g cuits,	noice g - N erials asket pass	ng · of ear s as s s · 9 sive
UNIT – III Power supply EMI filters ch capacitors, in and far fields a shield, shie Windows and UNIT – IV Electromagne inter modula	BALANCING, FILTERING AND SHIELDING a decoupling - Decoupling filters - Amplifier filtering - High freque b aracteristics of LPF, HPF, BPF, BEF and power line filter design ductors, transformers and resistors, EMC design components - Sh shielding effectiveness - Absorption and reflection loss - Magnetic eld discontinuities, slots and holes, seams and joints, conduct coatings - Grounding of shields EMI IN ELEMENTS AND CIRCUITS etic emissions, noise from relays and switches, non-linearity in cir tion, transients in power supply lines, EMI from power electroni	n - Cl ieldin c mat ive g cuits,	noice g - N erials asket pass	ng eau s as cs 9 sive
UNIT – III Power supply EMI filters ch capacitors, in and far fields a shield, shie Windows and UNIT – IV Electromagne inter modula EMI as combi UNIT – V Static Genera	BALANCING, FILTERING AND SHIELDING decoupling - Decoupling filters - Amplifier filtering - High freque haracteristics of LPF, HPF, BPF, BEF and power line filter design ductors, transformers and resistors, EMC design components - Sh shielding effectiveness - Absorption and reflection loss - Magnetic eld discontinuities, slots and holes, seams and joints, conduct coatings - Grounding of shields etic emissions, noise from relays and switches, non-linearity in cir tion, transients in power supply lines, EMI from power electroni nation of radiation and conduction ELECTROSTATIC DISCHARGE, STANDARDS AND TESTING tion - Human body model - Static discharges - ESD versus EMC, ESD	n - Cl ieldin c mat ive g cuits, c equ	poice g - N erials asket pass ipme	s as sive eart 9 sive ent
UNIT – III Power supply EMI filters ch capacitors, in and far fields a shield, shie Windows and UNIT – IV Electromagne inter modula EMI as combi UNIT – V Static Genera in equipment	BALANCING, FILTERING AND SHIELDING decoupling - Decoupling filters - Amplifier filtering - High freque haracteristics of LPF, HPF, BPF, BEF and power line filter design ductors, transformers and resistors, EMC design components - Sh shielding effectiveness - Absorption and reflection loss - Magnetic eld discontinuities, slots and holes, seams and joints, conduct coatings - Grounding of shields EMI IN ELEMENTS AND CIRCUITS stic emissions, noise from relays and switches, non-linearity in cir tion, transients in power supply lines, EMI from power electroni nation of radiation and conduction ELECTROSTATIC DISCHARGE, STANDARDS AND TESTING tion - Human body model - Static discharges - ESD versus EMC, ES 's - Standards - FCC requirements - EMI measurements - Open	n - Cl ieldin c mat ive g cuits, c equ SD pro area	pass ipme	9 ior site
UNIT – III Power supply EMI filters ch capacitors, in and far fields a shield, shie Windows and UNIT – IV Electromagne inter modula EMI as combi UNIT – V Static Genera in equipment measuremen	BALANCING, FILTERING AND SHIELDING decoupling - Decoupling filters - Amplifier filtering - High freque haracteristics of LPF, HPF, BPF, BEF and power line filter design ductors, transformers and resistors, EMC design components - Sh shielding effectiveness - Absorption and reflection loss - Magnetic eld discontinuities, slots and holes, seams and joints, conduct coatings - Grounding of shields EMI IN ELEMENTS AND CIRCUITS etic emissions, noise from relays and switches, non-linearity in cir tion, transients in power supply lines, EMI from power electroni nation of radiation and conduction ELECTROSTATIC DISCHARGE, STANDARDS AND TESTING tion - Human body model - Static discharges - ESD versus EMC, ES 's - Standards - FCC requirements - EMI measurements - Open ts and precautions - Radiated and conducted interference m	n - Cl ieldin c mat ive g cuits, c equ SD pro area	pass ipme	9 ior site
UNIT – III Power supply EMI filters ch capacitors, in and far fields a shield, shie Windows and UNIT – IV Electromagne inter modula EMI as combi UNIT – V Static Genera in equipment measuremen	BALANCING, FILTERING AND SHIELDING decoupling - Decoupling filters - Amplifier filtering - High freque haracteristics of LPF, HPF, BPF, BEF and power line filter design ductors, transformers and resistors, EMC design components - Sh shielding effectiveness - Absorption and reflection loss - Magnetic eld discontinuities, slots and holes, seams and joints, conduct coatings - Grounding of shields EMI IN ELEMENTS AND CIRCUITS stic emissions, noise from relays and switches, non-linearity in cir tion, transients in power supply lines, EMI from power electroni nation of radiation and conduction ELECTROSTATIC DISCHARGE, STANDARDS AND TESTING tion - Human body model - Static discharges - ESD versus EMC, ES 's - Standards - FCC requirements - EMI measurements - Open	n - Cl ieldin c mat ive g cuits, c equ SD pro area	pass ipme	9 ior ior ing ior
UNIT – III Power supply EMI filters ch capacitors, in and far fields a shield, shie Windows and UNIT – IV Electromagne inter modula EMI as combi UNIT – V Static Genera in equipment measuremen	BALANCING, FILTERING AND SHIELDING decoupling - Decoupling filters - Amplifier filtering - High freque haracteristics of LPF, HPF, BPF, BEF and power line filter design ductors, transformers and resistors, EMC design components - Sh shielding effectiveness - Absorption and reflection loss - Magnetic eld discontinuities, slots and holes, seams and joints, conduct coatings - Grounding of shields EMI IN ELEMENTS AND CIRCUITS etic emissions, noise from relays and switches, non-linearity in cir tion, transients in power supply lines, EMI from power electroni nation of radiation and conduction ELECTROSTATIC DISCHARGE, STANDARDS AND TESTING tion - Human body model - Static discharges - ESD versus EMC, ES 's - Standards - FCC requirements - EMI measurements - Open ts and precautions - Radiated and conducted interference m	n - Cl ieldin c mat ive g cuits, c equ SD pro area easur	pass ipme	<pre>g g g g g g g g g g g g g g g g g g g</pre>

- 1. V.P. Kodali, 'Engineering Electromagnetic Compatibility', S. Chand, 1996.
- 2. Henry W. Ott, 'Noise reduction techniques in electronic systems', John Wiley & Sons, 1989.
- 3. Bernhard Keiser, 'Principles of Electro–magnetic Compatibility', Artech House, Inc. 1987.
- 4. J. E. Bridges, J. Milleta and L. W. Ricketts., 'EMP Radiation and Protective techniques', John Wiley and sons, USA, 1976.
- 5. G. William Duff, & R. J. Donald White, 'A handbook Series on Electromagnetic Interference and Compatibility', Interference Control Technologies, Inc. 1988.
- 6. A. Weston David, 'Electromagnetic Compatibility, Principles and Applications', CRC Press, 2006.

	To understand the basic definition, sources of EMI and the design of EMC. To understand the design of cabling and grounding for EMC.
CO2 To	o understand the design of sabling and grounding for EMC
	o understand the design of cabining and grounding for Elvic.
CO3 To	To understand the various EMI filters and the shielding design for EMC.
CO4 To	To understand the various sources of EMI in power systems and its effect.
CO5 To	To understand the electrostatic discharge, standards and various measurement
teo	echniques of EMI.

Course					Pro	gram	Out	come	s					PS	SO	
Outcomes	а	b	С	d	е	f	g	h	I	j	k	L	1	2	3	4
CO1	3	3	2	2	1	1	1	1	1	1	3	3	1	1	3	3
CO2	3	3	2	2	2	1	1	1	1	1	3	3	1	1	3	3
CO3	3	3	3	3	2	1	2	1	1	1	3	3	1	1	3	3
CO4	3	2	3	3	3	1	2	1	1	1	3	3	1	1	3	2
C05	3	2	3	3	3	1	3	1	1	1	3	3	1	1	3	2

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119

PE1258	MEMS TECHNOLOGY	L	Т	Ρ	С
		3	0	0	3
Objectives					
	e students properties of materials, micro structure and fabricati	ion r	netł	lods	
	e design and modeling of Electrostatic sensors and actuators.				
	e characterizing thermal sensors and actuators through design a	and	mod	lelin	g.
	ne fundamentals of piezoelectric sensors and actuators throug				-
	EMS and NEMS devices.		•		
• To involve	Discussions / Practice / Exercise onto revising & familiarizing	g th	e co	once	pt
acquired ov	ver the 5 units of the subject for improved employability skills.				
UNIT – I	MICRO–FABRICATION, MATERIALS AND ELECTRO–MI	ЕСН		ΔΙ	9
	CONCEPTS				
and quality fac					
UNIT – II	ELECTROSTATIC SENSORS AND ACTUATION				9
Principle, mate and actuators -	rial, design and fabrication of parallel plate capacitors as electr Applications.	osta	itic s	ens	ors
UNIT – III	THERMAL SENSING AND ACTUATION				9
	erial, design and fabrication of thermal couples, thermal bin r sensors - Applications.	norp	oh s	ensc)rs,
UNIT – IV	PIEZOELECTRIC SENSING AND ACTUATION				9
	ffect - Cantilever piezoelectric actuator model - Properties of	of p	iezo	elect	
materials - App	lications.				
UNIT – V	CASE STUDIES				9
	sensors, Magnetic actuation, Micro fluidics applications, medic	al a	oplic	atio	_
Optical MEMS	– NEMS Devices				
	om discussions and tutorials can include the following guideline			•	
-	ning process: Discussions/Exercise/Practice on Workbench: design aspects of thermal/peizo/resistive sensors etc.	on	the	bas	
	Total P	erio	ds:	4	5
Text Books:		-			
1.Vikas Choudl Edition 2017	nary ,Krzysztof Iniewski, "MEMS fundamental Technology and A	ppli	catio	ons"	1 st

CO4

C05

- Chang Liu, 'Foundations of MEMS', Pearson publications, 2nd Edition, 2011.
 Marc Madou, 'Fundamentals of micro fabrication', CRC Press, 2nd Edition, 2002.
- 3. Boston, 'Micro machined Transducers Sourcebook', WCB McGraw Hill, 1998.
- 4. M. H. Bao 'Micromechanical transducers: Pressure sensors, accelerometers and gyroscopes', Elsevier, New york, 2000.

Course	Outc	omes	5 (CO)														
CO1	Unde	erstai	nd ba	asics	of m	icro f	abric	ation	, dev	velop	mod	els a	nd si	mulat	e ele	ectros	tatic
	and e	electi	roma	gneti	c sen	sors a	and a	ctuat	ors.								
CO2	Unde	erstai	nd m	ateria	al pro	perti	ies, ir	npor	tant f	for M	IEMS	syst	em pe	erforr	nanc	e, an	alyze
	dyna	amics of resonant micro mechanical structures.															
CO3	The	he learning process delivers insight onto design of micro sensors, embedded															
	sense	ensors & actuators in power aware systems like grid.															
CO4	Unde	Inderstand the design process and validation for MEMS devices and systems, and															
	learn	n the	state	of th	e art	in op	otical	micro	o syst	ems.							
CO5	Impr	oved	Em	ploya	bility	anc	l ent	trepro	eneui	rship	capa	acity	due	to	know	ledge	e up
	grad	ation	on re	ecent	tren	ds in	embe	eddeo	d syst	ems	desig	n.					
Cou	rse					Prog	ram	Outco	omes						PS	50	
Outco	mes	esabcdeFghijkl1234						4									
CO)1	1 3 3 3 3 2 1 1 1 1 1 2 3 3 2 3 2					2										
CO	2	2 3 3 3 3 2 1 1 1 1 1 2 3 3 2 3 2				2											
CO	3	3 3 3 3 2 1 1 1 1 2 3 3 2 3 2 3 3 3 3 2 1 1 1 1 1 2 3 3 2 3 2			2												

PE1259	DISTRIBUTED GENERATION AND MICROGRID	L	Т	Ρ	С
		3	0	0	3
Objectives					

- To illustrate the concept of distributed generation and its topologies.
- To analyze the impact of grid integration.
- To study concept of Microgrid and its configuration.
- To understand various modes of operation and control of micro grid.

UNIT – I INTRODUCTION

Conventional power generation: advantages and disadvantages, Energy crises, Nonconventional energy (NCE) resources: review of Solar PV, Wind Energy systems, Fuel Cells, micro-turbines, biomass, and tidal sources.

UNIT – II DISTRIBUTED GENERATIONS (DG)

Concept of distributed generations, topologies, selection of sources, regulatory standards/ framework, Standards for interconnecting Distributed resources to electric power systems: IEEE 1547. DG installation classes, security issues in DG implementations. Energy storage elements: Batteries, ultra–capacitors, flywheels. Captive power plants.

UNIT – III IMPACT OF GRID INTEGRATION

Requirements for grid interconnection, limits on operational parameters: voltage, frequency, THD, response to grid abnormal operating conditions, islanding issues. Impact of grid integration with NCE sources on existing power system: reliability, stability and power quality issues.

UNIT – IV BASICS OF A MICROGRID

Concept and definition of Microgrid, Microgrid drivers and benefits, review of sources of Microgrids, typical structure and configuration of a Microgrid, AC and DC microgrids, Power Electronics interfaces in DC and AC Microgrids.

UNIT – V CONTROL AND OPERATION OF MICROGRID

Modes of operation and control of Microgrid: grid connected and islanded mode, Active and reactive power control, protection issues, anti–islanding schemes: passive, active and communication–based techniques, Microgrid communication infrastructure, Power quality issues in Microgrids, regulatory standards, Microgrid economics, Introduction to smart Microgrids.

Total Periods: 45

9

9

9

9

9

- 1. Amirnaser Yezdani, and Reza Iravani, 'Voltage Source Converters in Power Systems: Modeling, Control and Applications', IEEE John Wiley Publications, 2010.
- 2. Dorin Neacsu, 'Power Switching Converters: Medium and High Power', CRC Press, Taylor & Francis, 2006.
- 3. Chetan Singh Solanki, 'Solar Photo Voltaics', PHI learning Pvt. Ltd., NewDelhi, 2009
- 4. J.F. Manwell, J.G. McGowan 'Wind Energy Explained, theory design and applications', Wiley publication2010.
- 5. D. D. Hall and R. P. Grover, 'Biomass Regenerable Energy', John Wiley, New York, 1987.
- 6. John Twidell and Tony Weir, 'Renewable Energy Resources' Taylor and Francis Publications, Second edition 2006.

Course	e Outcomes (CO)
CO1	Understand the various conventional and non-conventional sources of electrical
	energy.
CO2	Understand the various topologies, standards and energy storage elements of the
	distributed generations.
CO3	Understand the grid integration, stability and power quality issues of distributed
	generations.
CO4	Understand the different configurations and interfaces of the Microgrid.
CO5	Understand the control of Microgrids and the concept of smart Microgrids.

Course					Prog	gram	Outc	omes	5					PS	50	
Outcomes	а	b	С	d	е	f	g	h	i	j	k	-	1	2	3	4
CO1	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3
CO2	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3
CO3	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3
CO4	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3
C05	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3

PROFESSIONAL ELECTIVE – III & IV

PE1351HIGH VOLTAGE DIRECT CURRENT TRANSMISSIONLTPC

9

9

9

9

3

Objectives

- To impart knowledge on operation, modelling and control of HVDC link.
- To perform steady state analysis of AC/DC system.
- To expose various HVDC simulators.

UNIT – I DC POWER TRANSMISSION TECHNOLOGY

Introduction – Comparison of AC and DC transmission – Application of DC transmission – Description of DC transmission system – Planning for HVDC transmission – Modern trends in DC transmission – DC breakers – Cables, VSC based HVDC.

UNIT – II THYRISTOR BASED HVDC CONVERTERS AND HVDC SYSTEM 9 CONTROL

Pulse number, choice of converter configuration – Simplified analysis of Graetz circuit – Converter bridge characteristics – Characteristics of a twelve–pulse converter – Detailed analysis of converters. General principles of DC link control – Converter control characteristics – System control hierarchy – Firing angle control – Current and extinction angle control – Generation of harmonics and filtering – Power control – Higher level controllers – Valve tests

UNIT – III MULTI TERMINAL DC SYSTEMS

Introduction – Potential applications of MTDC systems – Types of MTDC systems – Control and protection of MTDC systems – Study of MTDC systems

UNIT – IV POWER FLOW ANALYSIS IN AC/DC SYSTEMS

Per unit system for DC Quantities – Modelling of DC links – Solution of DC load flow – Solution of AC–DC power flow – Unified, Sequential and Substitution of power injection method

UNIT – V SIMULATION OF HVDC SYSTEMS

Introduction – DC LINK Modelling, Converter Modeling and State Space Analysis, Philosophy and tools – HVDC system simulation, online and off–line simulators – Dynamic interactions between DC and AC systems

Total Periods: 45

Text Books:

- 1 P. Kundur, 'Power System Stability and Control', McGraw–Hill,1993
- 2 K. R. Padiyar, 'HVDC Power Transmission Systems', New Age International (P) Ltd., New Delhi, 2002.
- 3 S. Rao, 'EHV–AC, HVDC Transmission and Distribution Engineering', Third Edition. 2013.

- 1 J. Arrillaga, 'High Voltage Direct Current Transmission', Peter Pregrinus, London, 1983.
- 2 Erich Uhlmann, 'Power Transmission by Direct Current', BS Publications, 2004.
- 3 V. K. Sood, HVDC and FACTS controllers Applications of Static Converters in Power System, April 2004, Kluwer Academic Publishers

Course	Outcomes (CO)
CO1	Ability to understand the DC power Transmission technology and their related
	components.
CO2	Ability to understand the analysis of HVDC converters principles and control
CO3	Ability to understand about the Multi Terminal HVDC Systems
CO4	Ability to understand the power flow analysis in DC system
CO5	Ability to model and simulate the HVDC systems

Course					Prog	gram	Outc	omes	5					Ρ	SO	
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4
CO1	З	2	2	1	1	2	1	2	1	1	1	2	3	2	1	2
CO2	3	2	2	1	1	2	1	2	1	1	1	2	3	2	1	2
CO3	3	2	2	1	1	2	1	2	1	1	1	2	3	2	1	2
CO4	3	2	2	1	1	2	1	2	1	1	1	2	3	2	1	2
CO5	3	3	3	3	3	2	1	2	1	1	1	2	3	2	1	2
			•	•	-	•	•	•	-	-			•	-	-	

PE1352	SOLAR AND ENERGY STORAGE SYSTEMS	L	Т	Ρ	C
	1	3	0	0	3
			1	<u> </u>	
Objectives					
• To Study ab	out solar modules and PV system design and their applications.				
• To Deal wit	h grid connected PV systems.				
• To Discuss a	about different energy storage systems.				
UNIT – I					9
	of sunlight – Semiconductors and P–N junctions – Behaviour	of s	olar	cell	s –
Cell properties	– PV cell interconnection.				
UNIT – II	STAND ALONE PV SYSTEM				9
	 Storage systems – Power conditioning and regulation – MPP⁻ 	T– P	rote	ctio	
	/ systems design – Sizing.				
	· · · · ·				
UNIT – III	GRID CONNECTED PV SYSTEMS				9
PV systems in t	buildings – Design issues for central power stations – Safety – Ec	conc	omic	asp	ect
– Efficiency and	d performance – International PV programs.				
UNIT – IV	ENERGY STORAGE SYSTEMS				9
	mittent generation – Battery energy storage – Solar thermal er	horσ	v ctr	ารวิต	
•	electric energy storage.	ici 8	y sti	лug	L
i aniped nyaro					
UNIT – V	APPLICATIONS				9
Water pumpir	ng – Battery chargers – Solar car – Direct–drive applicatio	ons	– S	расе	<u> </u>
Telecommunic	ations.				
	Total P	erio	ds:	4	5
Text Books:					
	., 'Solar Photovoltaics: Fundamentals, Technologies and App	olica	tion	s'	рні
	t. Ltd., 2015.	oneo		5, 1	•••
0	Venham, Martin A. Green, Muriel E. Watt and Richard Co	rkisl	h, '/	٩ppl	ied
Photovoltai	cs', Third edition, 2012, Earthscan, UK.				
Reference Boo		<u>.</u>		<u> </u>	
	orenzo G. Araujo, 'Solar electricity engineering of photovo	Itaio	c sy	sten	۱s′,
Progensa, 1 2 Frank S Ba	994. rnes & Jonah G. Levine, 'Large Energy storage Systems Handbo	or'	CDC	Dre	200
2. Frank 3. Ba	mes & Johan G. Levine, Large Lifergy storage Systems Hallubo	, πο	CIT	, , , , , ,	.33,

- 3. McNeils, Frenkel, Desai, 'Solar & Wind Energy Technologies', Wiley Eastern, 1990.
- 4. S. P. Sukhatme, 'Solar Energy', Fourth edition, Tata McGraw Hill Education, 2017.

Course	Out	come	es (CC))													
CO1	Stu	dents	s will	l dev	/elop	mo	re u	nders	stand	ing o	on so	olar i	radiat	ion a	and s	solar	cell
	inte	rcon	necti	ons.													
CO2	Stu	dents	will	devel	op ba	asic k	nowl	edge	on st	anda	lone	PV sys	stem.				
CO3	Stu	Students will understand the issues in grid connected PV systems.															
CO4	Stu	Students will study about the modelling of different energy storage systems and															
	the	ir per	form	ances	s.												
CO5	Stu	dents	will	attair	n mor	e on	diffe	rent a	applic	atior	ns of s	olar e	energy	y.			
	CO5 Students will attain more on different applications of solar energy.																
Cour	Course Program Outcomes PSO																
Outcor	nes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4
CO1	L	3	3	3	3	2	3	3	3	2	2	1	2	3	2	2	2
CO2	2	2	3	3	3	3	3	3	3	3	3	1	2	2	3	3	3
COS	8	2	2	3	3	3	2	2	3	3	3	1	2	1	2	3	3
CO4	ļ	3	3	2	3	3	3	3	3	2	2	1	2	3	3	3	2
COS	5	3	3	3	3	2	2	3	3	2	2	1	2	3	2	2	2

PE1353	WIND ENERGY CONVERSION SYSTEMS	L	Т	Ρ	С
		3	0	0	3
Objectives					
• To learn l	oasic scientific working principles, various parts design	and	eff	icier	ιсу
computatio	n theories of wind turbine.				
• To learn the	e design and control principles of Wind turbine.				
• To understa	nd the concepts of fixed speed wind energy conversion system	s.			
	nd the concepts of variable speed wind energy conversion systemeters and the concepts of variable speed wind energy conversion systemeters and the concepts of variable speed wind energy conversion systemeters are apprecised with the concepts of the conce	ems.	•		
To analyze t	he grid integration and its issues.				
UNIT – I	INTRODUCTION				9
-	f WECS – WECS schemes – Power obtained from wind – Simp	lo r	nor	ont	_
•	coefficient – Sabinin's theory – Aerodynamics of Wind turbine.			ent	um
	ecenteient Subinitis theory Acrodynamics of Wind tarbine.				
UNIT – II	WIND TURBINES				9
HAWT - VAW	Γ – Power developed – Thrust–Efficiency – Rotor selection -	– Rc	otor	des	ign
considerations	- Tip speed ratio - No. of Blades - Blade profile - Power Re	gula	tion	– Y	aw
control – Pitch	angle control – Stall control – Schemes for maximum power ext	ract	ion.		
UNIT – III	FIXED SPEED SYSTEMS				9
• •	tems – Constant speed constant frequency systems – Choice				
-	s – Synchronous Generator – Squirrel Cage Induction Genera				
	Model wind turbine rotor – Drive Train model – Generator mo	odel	for	Stea	ady
state and Trans	ient stability analysis.				
UNIT – IV	VARIABLESPEED SYSTEMS				9
_	ble speed systems – Power–wind speed characteristics – N	Varia	able	SDE	
	iency systems synchronous generator – DFIG – PMSG – N			•	
•	deling Variable speed variable frequency schemes.				
-	;				
UNIT – V	GRID CONNECTED SYSTEMS				9
Wind intercor	nnection requirements, Low–Voltage Ride Through (LVRT	⁻), r	ram	ρ r	ate
	d supply of ancillary services for frequency and voltage co				
	ndustry trends wind interconnection impact on steady – stat	e an	id di	ynar	nic
performance of	f the power system including modeling issue.				
	Tetel D	orio	de	_	_
	Total P	erio	us:	4	5
	64				

- 1. L. L. Freris, 'Wind Energy conversion Systems', Prentice Hall, 1990.
- 2. S. N. Bhadra, D. Kastha, S. Banerjee, 'Wind Electrical Systems', Oxford University Press, 2010.
- 3. Ion Boldea, 'Variable speed generators', Taylor & Francis group, 2006.
- 4. E. W. Golding, 'The generation of Electricity by wind power', Redwood burn Ltd., Trowbridge, 1976.
- 5. N. Jenkins, 'Wind Energy Technology', John Wiley & Sons, 1997.
- 6. S. Heir, 'Grid Integration of WECS', Wiley 1998.

Course	Outcomes (CO)
CO1	Acquire knowledge on the basic concepts of Wind energy conversion system.
CO2	Understand the mathematical modeling and control of the Wind turbine
CO3	Develop more understanding on the design of Fixed speed system.
CO4	Study about the need of Variable speed system and its modeling.
CO5	Able to learn about Grid integration issues and current practices of wind
	interconnections with power system.

d

Course					Prog	ram	Outco	omes						PS	50	
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4
CO1	3	3	3	3	3	1	3	1	1	1	1	1	3	3	3	1
CO2	3	3	3	3	3	1	3	1	1	1	1	1	3	3	3	1
CO3	3	3	3	3	3	1	3	1	1	1	1	1	3	3	3	1
CO4	3	3	3	3	3	1	3	1	1	1	1	1	3	3	3	1
C05	3	3	3	3	3	1	3	1	1	1	1	1	3	3	3	1

PE1354	ENERGY MANAGEMENT AND AUDITING	L	Т	Ρ	С
		3	0	0	3
Objectives					
• To study the	e concepts behind economic analysis and Load management.				
To emphasize	ze the energy management on various electrical equipment and	d me	eteri	ng.	
To Illustrate	the concept of lighting systems and cogeneration.				
UNIT – I	INTRODUCTION				9
Need for ene	rgy management – Energy basics – Designing and start	ing	an	ene	rgy
management p	rogram – Energy accounting – Energy monitoring, targeting a	and	repc	ortin	g –
Energy audit pr	ocess.				
					_
UNIT – II	ENERGY COST AND LOAD MANAGEMENT				9
Important cond	cepts in an economic analysis – Economic models – Time val	ue c	of m	one	y —
-	ictures – Cost of electricity – Loss evaluation – Load manage				-
control techniq	ues – Utility monitoring and control system – HVAC and energy	gy m	anag	zem	ent
– Economic jus				-	
-					
UNIT – III	ENERGY MANAGEMENT FOR MOTORS, SYSTEMS AND I	ELEC	TRIC	CAL	9
	EQUIPMENT				
Systems and e	quipment – Electric motors – Transformers and reactors –	Capa	acito	ors a	and
synchronous m					
UNIT – IV	METERING FOR ENERGY MANAGEMENT				9
	etween parameters – Units of measure – Typical cost factors -	_ +	ilitv	met	_
	ter disc for kilowatt measurement – Demand meters – Paralle		-		
•	- Instrument transformer burdens – Multitasking solid – S	-	-		
	on vs. requirements – Metering techniques and practical exam				,
Wetering locati	on vs. requirements - metering teeninques and proclear exam	pics			
UNIT – V	LIGHTING SYSTEMS & COGENERATION				9
			Do	llact	_
	iting systems – The task and the working space – Light source ighting controls – Optimizing lighting energy – Power factor				
	power quality – Cost analysis techniques – Lighting and en				
interconnection	Forms of cogeneration – Feasibility of cogeneration	. –	CI	ecti	LdI
	1.				
	Total P	loric	der	л	5
	Total P	6110	us:	4	5
	66				

- 1 Barney L. Capehart, Wayne C. Turner, and William J. Kennedy, 'Guide to Energy Management', Fifth Edition, The Fairmont Press, Inc., 2006
- **2** Eastop T.D & Croft D.R, 'Energy Efficiency for Engineers and Technologists', Logman Scientific & Technical, 1990.
- **3** Reay D.A, 'Industrial Energy Conservation', 1st edition, Pergamon Press, 1977.
- 4 'IEEE Recommended Practice for Energy Management in Industrial and Commercial Facilities', IEEE,1996
- 5 Amit K. Tyagi, 'Handbook on Energy Audits and Management', TERI, 2003.

Course Outcomes (CO)

CO1 Students will develop the ability to learn about the need for energy management and auditing process.

CO2 Learners will learn about basic concepts of economic analysis and load management.

- CO3 Students will understand the energy management on various electrical equipment.
- CO4 Students will have knowledge on the concepts of metering and factors influencing cost function.
- CO5 Students will be able to learn about the concept of lighting systems, light sources and various forms of cogeneration.

Course					Prog	ram	Outco	omes						PS	50	
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4
CO1	3	3	3	2	1	1	1	1	1	1	3	3	3	1	3	3
CO2	3	3	3	3	1	1	1	1	1	1	3	3	3	1	3	3
CO3	3	3	3	3	1	1	1	1	1	1	3	3	3	2	3	3
CO4	3	3	3	2	1	1	1	1	1	1	2	3	3	2	3	2
C05	3	3	3	2	1	1	1	1	1	1	3	3	3	2	3	2

PE1355

NON-LINEAR DYNAMICS FOR POWER ELECTRONICS CIRCUIT

9

9

9

Objectives

- To understand the non–linear behaviour of power electronic converters
- To understand the techniques for investigation on non linear behaviour of power electronic converters
- To analyze the non linear phenomena in DC to DC converters
- To analyze the non linear phenomena in AC and DC Drives
- To introduce the control techniques for control of non linear behaviour in power electronic systems

UNIT – I BASICS OF NON–LINEAR DYNAMICS

Basics of Nonlinear Dynamics: System, state and state space model, Vector field – Modelling of Linear, nonlinear and Linearized systems, Attractors, chaos, Poincare map, Dynamics of Discrete time system, Lyapunov Exponent, Bifurcations, Bifurcations of smooth map, Bifurcations in piece wise smooth maps, border crossing and border collision bifurcation.

UNIT – II TECHNIQUES FOR INVESTIGATION OF NON–LINEAR PHENOMENA

Techniques for experimental investigation, Techniques for numerical investigation, Computation of averages under chaos, Computations of spectral peaks, Computation of the bifurcation and analyzing stability.

UNIT – III NON–LINEAR PHENOMENA IN DC–DC CONVERTERS

Border collision in the Current Mode controlled Boost Converter, Bifurcation and chaos in the Voltage controlled Buck Converter with latch, Bifurcation and chaos in the Voltage controlled Buck Converter without latch, Bifurcation and chaos in Cuk Converter. Nonlinear phenomenon in the inverter under tolerance band control.

UNIT – IV

NON-LINEAR PHENOMENA IN DRIVES

Nonlinear Phenomenon in Current controlled and voltage–controlled DC Drives, Nonlinear Phenomenon in PMSM Drives.

UNIT – V CONTROL OF CHAOS

Hysteresis control, sliding mode and switching surface control, OGY Method, Pyragas method, Time Delay control. Application of the techniques to the Power electronics circuit and drives.

Total Periods: 45

9

Reference Books:

- 1. Steven H Strogatz, Nonlinear Dynamics and Chaos, West view Press, 2001.
- 2. C.K.TSE Complex Behaviour of Switching Power Converters, CRC Press, 2003.
- 3. George C. Vargheese, July 2001 Wiley IEEE Press S Banerjee, Nonlinear Phenomena in Power Electronics, IEEE Press 3.

Course Outcomes (CO)CO1Ability to comprehend the non – linear behaviour of power electronic
convertersCO2Ability to understand the techniques for investigation on non – linear
behaviour of power electronic convertersCO3To analyse the non–linear phenomena in DC to DC convertersCO4To analyse the non–linear phenomena in AC and DC DrivesCO5Ability to explain the control techniques for control of non–linear behaviour in
power electronic systems

Course				Pr	ogran	n Out	comes					Р	SO	
Outcomes	а	b	С	d	е	f	g	h	i	j	1	2	3	4
CO1	3	3	2	3	3	1	1	1	1	1	3	3	3	2
CO2	3	3	2	3	3	1	1	1	1	1	3	3	3	2
CO3	3	3	2	3	3	1	1	1	1	1	3	3	3	2
CO4	3	3	2	3	3	1	1	1	1	1	3	3	3	2
C05	3	3	2	3	3	1	1	1	1	1	3	3	3	2

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119

PE1356	SMART GRID	L	Т	Ρ	С
		3	0	0	3
Objectives					
• To Study a	bout Smart Grid technologies, different smart meters and adva	nce	d me	eteri	ng
infrastruct	ure.				
• To familia	rize the power quality management issues in Smart Grid.				
To familia	rize the high-performance computing for Smart Grid application	n			
UNIT – I	INTRODUCTION TO SMART GRID				9
	ectric Grid, Concept, Definitions and Need for Smart Grid, Sma	-			-
	ortunities, challenges and benefits, Difference between conven	tion	al &	Sm	art
Grid, National a	and International Initiatives in Smart Grid				
					-
UNIT – II	SMART GRID TECHNOLOGIES				9
Technology Dr	ivers, Smart energy resources, Smart substations, Substatio	n A	uton	natio	on,
Feeder Automa	ation, Transmission systems: EMS, FACTS and HVDC, Wide ar	ea r	noni	tori	ng,
Protection and	d control, Distribution systems: DMS, Volt/Var control, Fa	ult	Det	ecti	on,
Isolation and	service restoration, Outage management, High-Efficience	y C	Distri	ibuti	ion
Transformers, I	Phase Shifting Transformers, Plug in Hybrid Electric Vehicles (PH	EV)			
UNIT – III	SMART METERS AND ADVANCED METERING INFRASTRU	CTU	RE		9
	Smart Meters, Advanced Metering infrastructure (AMI) driver				-
•	standards and initiatives, AMI needs in the smart grid, Phasor				
	telligent Electronic Devices (IED) & their application for	mo	nito	ring	&
protection					
UNIT – IV	POWER QUALITY MANAGEMENT INSMART GRID				9
-	& EMC in Smart Grid, Power Quality issues of Grid connect	ha	Rona		
•	s, Power Quality Conditioners for Smart Grid, Web based				
	wer Quality Audit	100		Quu	iicy
UNIT – V	HIGH PERFORMANCE COMPUTING FOR SMAR	RT	GR	RID	9
	APPLICATIONS				
Local Area Ne	etwork (LAN), House Area Network (HAN), Wide Area Ne	two	rk (WA	N),
	er Power line (BPL), IP based Protocols, Basics of Web Servi				• •
Computing to r	nake Smart Grids smarter, Cyber Security for Smart Grid				
	Total Pe	erio	ds:	4	5
	70				

Text Books:

- 1. Stuart Borlase 'Smart Grid: Infrastructure, Technology and Solutions', CRC Press, 2012.
- 2. Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, 'Smart Grid: Technology and Applications', Wiley, 2012.

- 1. Vehbi C. Güngör, Dilan Sahin, Taskin Kocak, Salih Ergüt, Concettina Buccella, Carlo Cecati and Gerhard P. Hancke, 'Smart Grid Technologies: Communication Technologies and Standards', IEEE Transactions on Industrial Informatics, Vol. 7, No. 4, November 2011.
- 2. Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang, 'Smart Grid The New and Improved Power Grid: A Survey', IEEE Transaction on Smart Grids, Vol. 14, 2012.

Course	e Outcomes (CO):
CO1	Learners will develop more understanding on the concepts of Smart Grid and its present developments.
CO2	Learners will study about different Smart Grid technologies.
CO3	Learners will acquire knowledge about different smart meters and advanced
	metering infrastructure.
CO4	Learners will have knowledge on power quality management in Smart Grids
CO5	Learners will develop more understanding on LAN, WAN and Cloud Computing for
	Smart Grid applications.

Course					Prog	gram	Outc	omes	5					PS	50	
Outcomes	а	b	С	d	е	f	g	h	i	j	k	-	1	2	3	4
CO1	3	1	2	1	1	2	2	1	1	1	1	1	3	1	1	1
CO2	З	1	2	1	1	2	2	1	1	1	1	1	3	1	1	1
CO3	3	1	2	1	1	2	2	1	1	1	1	1	3	1	1	1
CO4	3	1	2	1	1	2	2	1	1	1	1	1	3	1	1	1
C05	3	1	2	1	1	2	2	1	1	1	1	1	3	1	1	1

PE1357	POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS	L	т	Ρ	C
		3	0	0	3
Objectives					
•	knowledge about the stand alone and grid connected rene	ewa	ble	ene	rg
systems.					_
	with required skills to derive the criteria for the design of power	con	vert	ers	fo
	energy applications.	:I		t	
•	and comprehend the various operating modes of wind electri	icai	gen	erat	or
	nergy systems. Jifferent power converters namely AC to DC, DC to DC and AC to		con	vort	٥r
•	ble energy systems.		con	vert	CI
	maximum power point tracking algorithms				
10 461610					
UNIT – I	INTRODUCTION				
Environmenta	al aspects of electric energy conversion: Impacts of rene	wał	ble	ene	rg
	n environment (cost–GHG Emission) – Qualitative study of differ				0
•					bl
energy resou	rces ocean. Biomass. Hydrogen energy systems: Operating	prin	laio	es a	
•	Irces ocean, Biomass, Hydrogen energy systems: Operating s of: Solar PV. Fuel cells. Wind electrical systems – Control strate	•	•		an
•	Irces ocean, Biomass, Hydrogen energy systems: Operating s of: Solar PV, Fuel cells, Wind electrical systems – Control strate	•	•		an
characteristic		•	•		an
characteristic		egy,	, Op		an
characteristic area. UNIT – II	s of: Solar PV, Fuel cells, Wind electrical systems – Control strat	egy,	, Op ON	erat	in
characteristic area. UNIT – II	s of: Solar PV, Fuel cells, Wind electrical systems – Control strate ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVE ference theory fundamentals – Principle of operation and analy	egy,	, Op ON	erat	in
characteristic area. UNIT – II Review of ref	s of: Solar PV, Fuel cells, Wind electrical systems – Control strate ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVE ference theory fundamentals – Principle of operation and analy	egy,	, Op ON	erat	in
characteristic area. UNIT – II Review of ref SCIG and DFIC	s of: Solar PV, Fuel cells, Wind electrical systems – Control strate ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVE ference theory fundamentals – Principle of operation and analy	egy,	, Op ON	erat	an in SC
characteristic area. UNIT – II Review of ref SCIG and DFIC UNIT – III	s of: Solar PV, Fuel cells, Wind electrical systems – Control strate ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVE ference theory fundamentals – Principle of operation and analy G.	ERSI	, Op ON IG,	erat PM	an in SC
characteristic area. UNIT – II Review of ref SCIG and DFIC UNIT – III Block diagram	s of: Solar PV, Fuel cells, Wind electrical systems – Control strate ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVE ference theory fundamentals – Principle of operation and analy G. POWER ELECTRONICS FOR SOLAR	Ersio	, Op ON IG,	PM:	an in SC
characteristic area. UNIT – II Review of ref SCIG and DFIC UNIT – III Block diagram Boost and B	s of: Solar PV, Fuel cells, Wind electrical systems – Control strate ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVE ference theory fundamentals – Principle of operation and analy G. POWER ELECTRONICS FOR SOLAR n of Solar Photovoltaic system: Line commutated converters (inve	ERSI ysis:	, Op ON IG, on—m	PM: node	an in SC
characteristic area. UNIT – II Review of ref SCIG and DFIC UNIT – III Block diagram Boost and B	s of: Solar PV, Fuel cells, Wind electrical systems – Control strate ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVE ference theory fundamentals – Principle of operation and analy G. POWER ELECTRONICS FOR SOLAR n of Solar Photovoltaic system: Line commutated converters (inve uck–Boost Converters – Selection of inverter, Battery sizing, V systems – Grid tied and Grid interactive inverters – Grid connect	ERSI ysis:	, Op ON IG, on—m ay s	PM: node	an in SC
characteristic area. UNIT – II Review of ref SCIG and DFIC UNIT – III Block diagram Boost and Bi Standalone P	s of: Solar PV, Fuel cells, Wind electrical systems – Control strate ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVE ference theory fundamentals – Principle of operation and analy G. POWER ELECTRONICS FOR SOLAR n of Solar Photovoltaic system: Line commutated converters (inve uck–Boost Converters – Selection of inverter, Battery sizing,	ERSI ysis:	, Op ON IG, on—m ay s	PM: node	an in SC
characteristic area. UNIT – II Review of ref SCIG and DFIC UNIT – III Block diagram Boost and Bl Standalone P UNIT – IV Three phase	s of: Solar PV, Fuel cells, Wind electrical systems – Control strate ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVE ference theory fundamentals – Principle of operation and analy G. POWER ELECTRONICS FOR SOLAR n of Solar Photovoltaic system: Line commutated converters (inve uck–Boost Converters – Selection of inverter, Battery sizing, V systems – Grid tied and Grid interactive inverters – Grid connect POWER ELECTRONICS FOR WIND AC voltage controllers – AC–DC–AC converters: Uncontrolled reference	ERSI ysis: Arra ectif	, Op ON IG, on—m ay so issu	PM: node izinį ues.	
characteristic area. UNIT – II Review of ref SCIG and DFIC UNIT – III Block diagram Boost and Bl Standalone P UNIT – IV Three phase Inverters, Ma	s of: Solar PV, Fuel cells, Wind electrical systems – Control strate ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVE ference theory fundamentals – Principle of operation and analy G. POWER ELECTRONICS FOR SOLAR n of Solar Photovoltaic system: Line commutated converters (inve uck–Boost Converters – Selection of inverter, Battery sizing, V systems – Grid tied and Grid interactive inverters – Grid connect POWER ELECTRONICS FOR WIND AC voltage controllers – AC–DC–AC converters: Uncontrolled re- trix converters – Standalone operation of fixed and variable spee	ERSI ysis: ersio Arra tion ectif	, Op ON IG, on—n ay s issu fiers <i>i</i> nd	erat PM: izinį ues.	
characteristic area. UNIT – II Review of ref SCIG and DFIC UNIT – III Block diagram Boost and Bl Standalone P UNIT – IV Three phase Inverters, Ma	s of: Solar PV, Fuel cells, Wind electrical systems – Control strate ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVE ference theory fundamentals – Principle of operation and analy G. POWER ELECTRONICS FOR SOLAR n of Solar Photovoltaic system: Line commutated converters (inve uck–Boost Converters – Selection of inverter, Battery sizing, V systems – Grid tied and Grid interactive inverters – Grid connect POWER ELECTRONICS FOR WIND AC voltage controllers – AC–DC–AC converters: Uncontrolled reference	ERSI ysis: ersio Arra tion ectif	, Op ON IG, on—n ay s issu fiers <i>i</i> nd	erat PM: izinį ues.	
characteristic area. UNIT – II Review of ref SCIG and DFIC UNIT – III Block diagram Boost and Bi Standalone P UNIT – IV Three phase Inverters, Ma conversion sy	s of: Solar PV, Fuel cells, Wind electrical systems – Control strate ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVER ference theory fundamentals – Principle of operation and analy G. POWER ELECTRONICS FOR SOLAR n of Solar Photovoltaic system: Line commutated converters (inve uck–Boost Converters – Selection of inverter, Battery sizing, V systems – Grid tied and Grid interactive inverters – Grid connect POWER ELECTRONICS FOR WIND AC voltage controllers – AC–DC–AC converters: Uncontrolled re trix converters – Standalone operation of fixed and variable spee stems – Grid connection Issues – Grid integrated PMSG and SCIG	ERSI ysis: ersio Arra tion ectif	, Op ON IG, on—n ay s issu fiers <i>i</i> nd	erat PM: izinį ues.	sc sc sc sc sc sc sc sc sc sc sc sc sc s
characteristic area. UNIT – II Review of ref SCIG and DFIC UNIT – III Block diagram Boost and Br Standalone P UNIT – IV Three phase Inverters, Ma conversion sy UNIT – V	s of: Solar PV, Fuel cells, Wind electrical systems – Control strate ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVER ference theory fundamentals – Principle of operation and analy G. POWER ELECTRONICS FOR SOLAR n of Solar Photovoltaic system: Line commutated converters (inver- uck–Boost Converters – Selection of inverter, Battery sizing, V systems – Grid tied and Grid interactive inverters – Grid connect POWER ELECTRONICS FOR WIND AC voltage controllers – AC–DC–AC converters: Uncontrolled re- trix converters – Standalone operation of fixed and variable spee- stems – Grid connection Issues – Grid integrated PMSG and SCIG HYBRID RENEWABLE ENERGY SYSTEMS	ERSI ysis: ersic Arra tion ectif	, Op ON IG, on–n ay s issu fiers <i>i</i> nd ed V	erat PM: node izinş ues. , PV ene VEC:	an ir SC SC ع) SC SC SC
characteristic area. UNIT – II Review of ref SCIG and DFIC UNIT – III Block diagram Boost and Bl Standalone P UNIT – IV Three phase Inverters, Ma conversion sy UNIT – V Need for Hyb	s of: Solar PV, Fuel cells, Wind electrical systems – Control strat ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVE ference theory fundamentals – Principle of operation and analy 5. POWER ELECTRONICS FOR SOLAR n of Solar Photovoltaic system: Line commutated converters (inve uck–Boost Converters – Selection of inverter, Battery sizing, V systems – Grid tied and Grid interactive inverters – Grid connect POWER ELECTRONICS FOR WIND AC voltage controllers – AC–DC–AC converters: Uncontrolled re trix converters – Standalone operation of fixed and variable spee estems – Grid connection Issues – Grid integrated PMSG and SCIG HYBRID RENEWABLE ENERGY SYSTEMS rid Systems – Range and type of Hybrid Systems – Case studies	ERSI ysis: ersic Arra tion ectif	, Op ON IG, on–n ay s issu fiers <i>i</i> nd ed V	erat PM: node izinş ues. , PV ene VEC:	an ir SC SC ع) SC SC SC
characteristic area. UNIT – II Review of ref SCIG and DFIC UNIT – III Block diagram Boost and Bl Standalone PV UNIT – IV Three phase Inverters, Ma conversion sy UNIT – V Need for Hyb	s of: Solar PV, Fuel cells, Wind electrical systems – Control strate ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVER ference theory fundamentals – Principle of operation and analy G. POWER ELECTRONICS FOR SOLAR n of Solar Photovoltaic system: Line commutated converters (inver- uck–Boost Converters – Selection of inverter, Battery sizing, V systems – Grid tied and Grid interactive inverters – Grid connect POWER ELECTRONICS FOR WIND AC voltage controllers – AC–DC–AC converters: Uncontrolled re- trix converters – Standalone operation of fixed and variable spee- stems – Grid connection Issues – Grid integrated PMSG and SCIG HYBRID RENEWABLE ENERGY SYSTEMS	ERSI ysis: ersic Arra tion ectif	, Op ON IG, on–n ay s issu fiers <i>i</i> nd ed V	erat PM: node izinş ues. , PV ene VEC:	an in SC SC SC SC SC SC SC SC SC SC SC SC SC
characteristic area. UNIT – II Review of ref SCIG and DFIC UNIT – III Block diagram Boost and Bl Standalone PV UNIT – IV Three phase Inverters, Ma conversion sy UNIT – V Need for Hyb	s of: Solar PV, Fuel cells, Wind electrical systems – Control strat ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVE ference theory fundamentals – Principle of operation and analy 5. POWER ELECTRONICS FOR SOLAR n of Solar Photovoltaic system: Line commutated converters (inve uck–Boost Converters – Selection of inverter, Battery sizing, V systems – Grid tied and Grid interactive inverters – Grid connect POWER ELECTRONICS FOR WIND AC voltage controllers – AC–DC–AC converters: Uncontrolled re trix converters – Standalone operation of fixed and variable spee estems – Grid connection Issues – Grid integrated PMSG and SCIG HYBRID RENEWABLE ENERGY SYSTEMS rid Systems – Range and type of Hybrid Systems – Case studies	ersion Arra tion Bas	fiers // Winc	erat PM: node izinş ues. , PV ene VEC: 1 – F	

Text Books:

- 1 S. N. Bhadra, D. Kastha, & S. Banerjee 'Wind Electrical Systems', Oxford University Press, 2009.
- 2 M. H. Rashid, 'Power Electronics Hand book', Academic press, 2001.
- 3 G.D. Rai, 'Non–Conventional Energy Sources', Khanna publishers, 2004.
- 4 G.D. Rai, 'Solar Energy Utilization', Khanna publishes, 1993.

- 1 Gray, L. Johnson, 'Wind energy system', Prentice Hall linc, 2006.
- 2 B. H. Khan, 'Non–conventional Energy sources', Tata McGraw Hill Publishing Company, 2006.
- 3 P.S. Bimbhra, 'Power Electronics', Khanna Publishers, 5th Edition, 2012.
- 4 Fang Lin Luo, Hong Ye, 'Renewable Energy Systems', Taylor & Francis Group, 2013.
- 5 R. Seyezhai and R. Ramaprabha, 'Power Electronics for Renewable Energy Systems', Scitech Publications, 2015.

Course Outcomes (CO)									
CO1	Discuss and analyze the various types of renewable energy sources								
CO2	Analyze the performance of IG, PMSG, SCIG AND DFIG								
CO3	Design different power converters namely AC to DC, DC to DC and AC to AC								
	converters for renewable energy sources								
CO4	Analyze various operating modes of wind electrical generators and solar energy								
	systems								
CO5	Develop maximum power point tracking algorithms								

Course					Prog	ram	Outco	omes						PS	50	
Outcomes	а	b	С	d	е	f	g	h	i	j	k	-	1	2	3	4
CO1	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3
CO2	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3
CO3	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3
CO4	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3
C05	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3

ROBOTICS AND CONTROL

L T P C 3 0 0 3

9

9

9

9

9

Objectives

- To introduce robot terminologies and robotic sensors
- To educate direct and inverse kinematic relations
- To educate on formulation of manipulator Jacobians and introduce path planning techniques
- To educate on robot dynamics
- To introduce robot control techniques

UNIT – I INTRODUCTION AND TERMINOLOGIES

Definition – Classification – History – Robot's components – Degrees of freedom – Robot joints – Coordinates – Reference frames – Workspace – Robot languages – Actuators – Sensors: Position, Velocity, Acceleration, Torque, Tactile, Touch, Proximity and range sensors – Vision system – Social issues.

UNIT – II KINEMATICS

Mechanism – Matrix representation – Homogenous transformation – DH representation – Inverse kinematics solution and programming – Degeneracy and Dexterity

UNIT – III DIFFERENTIAL MOTION AND PATH PLANNING

Jacobian – Differential motion of frames – Interpretation – Calculation of Jacobian – Inverse Jacobian – Robot Path planning.

UNIT – IV DYNAMIC MODELLING

Lagrangian mechanics – Two–DOF manipulator – Lagrange – Euler formulation – Newton – Euler formulation – Inverse dynamics

UNIT – V ROBOT CONTROL SYSTEM

Linear control schemes – Joint actuators – Decentralized PID control – Computed torque control – Force control – Hybrid position force control – Impedance / Torque control

Total Periods: 45

Text Books:

1. R.K. Mittal and I J Nagrath, 'Robotics and Control', Tata MacGraw Hill, Fourth edition.

2. Saeed B. Niku, 'Introduction to Robotics', Pearson Education, 2002.

- 1. K. S. Fu, R.C. Gonzalez and C.S.G. Lee, 'Robotics: Control, Sensing, Vision and Intelligence' McGraw Hill Education India, 1986.
- 2. R. D. Klafter, TA Chmielewski and Michael Negin, 'Robotic Engineering, An Integrated approach', Prentice Hall of India, 2003.
- 3. R.D. Klafter, T. A. Chmielewski and M. Negin, 'Robotic Engineering An Integrated Approach', Prentice Hall, 2003.
- 4. M. P. Groover, 'Industrial Robotics Technology Programming and Applications', McGraw Hill, 2001.

Course Outcomes (CO)CO1Ability to understand the components and basic terminology of RoboticsCO2Ability to understand the basics of kinematics relationsCO2Ability to understand the motion of Robots and analyze the workspace and

- CO3 Ability to model the motion of Robots and analyze the workspace and trajectory panning of robots
- CO4 Ability to develop application–based Robots
- CO5 Ability to formulate models for the control of mobile robots in various industrial applications

Course					Prog	ram	Outco	omes						PS	50	
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4
CO1	3	2	2	1	1	1	1	1	1	1	1	1	3	1	1	1
CO2	3	2	2	1	1	1	1	1	1	1	1	1	3	1	1	1
CO3	3	2	2	2	1	1	1	1	1	1	1	1	3	3	2	1
CO4	3	2	2	2	1	1	1	1	1	1	1	1	3	3	2	1
CO5	3	1	1	1	1	1	1	1	1	1	1	1	2	3	1	1

PE1359	NON-LINEAR CONTROL	L	Т	Ρ	С
		3	0	0	3
Objectives					
	nowledge on phase plane analysis of non–linear systems.				
•	knowledge on Describing function-based approach t	o r	non-	-line	ea
systems.					
• To educate	on stability analysis of systems using Lyapunov's theory.				
To introduce	e the concept of sliding mode control.				
UNIT – I	PHASE PLANE ANALYSIS				9
-	hase plane analysis – Phase portraits – Singular points – Symr	netr	v in	nh	
	– Constructing Phase Portraits – Phase plane Analysis of Linear		-	-	
Systems – Exis	tence of Limit Cycles; simulation of phase portraits in MATLAB.				
UNIT – II	DESCRIBING FUNCTION				9
	nction Fundamentals – Definitions – Assumptions – Comput	inσ	Des	crih	
•			000		35
Functiones Cor	mmon Non linearities and its Describing Eurotians – Nyquist C	itor	inn	- n d	:+.
	nmon Non-linearities and its Describing Functions – Nyquist Cr				
	nmon Non-linearities and its Describing Functions – Nyquist Cr istence of Limit Cycles – Stability of limit Cycles; Simulation of				
Extension – Ex					
Extension – Ex MATLAB.					
Extension – Ex MATLAB. UNIT – III	istence of Limit Cycles – Stability of limit Cycles; Simulation of	[:] lim	it cy	vcles	s ir 9
Extension – Ex MATLAB. UNIT – III Nonlinear Syst Stability; Lyap	LYAPUNOV THEORY ems and Equilibrium Points – Concepts of Stability – Lineariza unov's Direct Method – Positive definite Functions and Lyapu	ition	it cy i and Fun	d Lo	s ir 9 oca
Extension – Ex MATLAB. UNIT – III Nonlinear Syst Stability; Lyap Equilibrium Po	LYAPUNOV THEORY ems and Equilibrium Points – Concepts of Stability – Lineariza unov's Direct Method – Positive definite Functions and Lyapu point Theorems – Invariant Set Theorems – LTI System Anal	ition nov ysis	it cy and Fun bas	d Lo d Lo	s ir 9 oca ons or
Extension – Ex MATLAB. UNIT – III Nonlinear Syst Stability; Lyapu Equilibrium Po Lyapunov's Dir	LYAPUNOV THEORY Tems and Equilibrium Points – Concepts of Stability – Lineariza unov's Direct Method – Positive definite Functions and Lyapu point Theorems – Invariant Set Theorems – LTI System Anal rect Method; Krasovski's Method – Variable Gradient Method	ition nov ysis	it cy and Fun bas	d Lo d Lo	s ir 9 oca ons or
Extension – Ex MATLAB. UNIT – III Nonlinear Syst Stability; Lyap Equilibrium Po Lyapunov's Dir	LYAPUNOV THEORY ems and Equilibrium Points – Concepts of Stability – Lineariza unov's Direct Method – Positive definite Functions and Lyapu point Theorems – Invariant Set Theorems – LTI System Anal	ition nov ysis	it cy and Fun bas	d Lo d Lo	s ir 9 oca ons or
Extension – Ex MATLAB. UNIT – III Nonlinear Syst Stability; Lyapu Equilibrium Po Lyapunov's Din Control Design	LYAPUNOV THEORY Tems and Equilibrium Points – Concepts of Stability – Lineariza unov's Direct Method – Positive definite Functions and Lyapu point Theorems – Invariant Set Theorems – LTI System Anal rect Method; Krasovski's Method – Variable Gradient Method	ition nov ysis	it cy and Fun bas	d Lo d Lo	9 סכמ סרא סרא סרא סרא
Extension – Ex MATLAB. UNIT – III Nonlinear Syst Stability; Lyapu Equilibrium Po Lyapunov's Din Control Design	LYAPUNOV THEORY Tems and Equilibrium Points – Concepts of Stability – Lineariza unov's Direct Method – Positive definite Functions and Lyapu point Theorems – Invariant Set Theorems – LTI System Anal rect Method; Krasovski's Method – Variable Gradient Method based on Lyapunov's Direct Method.	ition nov ysis – P	it cy and Fun bas Phys	vcles	s ir 9 oca ons or y - 9
Extension – Ex MATLAB. UNIT – III Nonlinear Syst Stability; Lyapu Equilibrium Po Lyapunov's Din Control Design UNIT – IV Feedback Line	LYAPUNOV THEORY Tems and Equilibrium Points – Concepts of Stability – Lineariza unov's Direct Method – Positive definite Functions and Lyapu point Theorems – Invariant Set Theorems – LTI System Anal rect Method; Krasovski's Method – Variable Gradient Method based on Lyapunov's Direct Method.	ition nov ysis – P	it cy a and Fun bas Phys	vcles	s ir 9 oca ons or y - 9 ate
Extension – Ex MATLAB. UNIT – III Nonlinear Syst Stability; Lyapu Equilibrium Po Lyapunov's Din Control Design UNIT – IV Feedback Line	LYAPUNOV THEORY ems and Equilibrium Points – Concepts of Stability – Lineariza unov's Direct Method – Positive definite Functions and Lyapu oint Theorems – Invariant Set Theorems – LTI System Anal rect Method; Krasovski's Method – Variable Gradient Method based on Lyapunov's Direct Method. FEEDBACK LINEARIZATION earization and the Canonical Form–Mathematical Tools	ition nov ysis – P – Ii	it cy i and Fun bas Phys	vcles	s ir 9 0ca 0ns 0r 9 ate g a
Extension – Ex MATLAB. UNIT – III Nonlinear Syst Stability; Lyapu Equilibrium Po Lyapunov's Din Control Design UNIT – IV Feedback Line Linearization o Linear Input –	LYAPUNOV THEORY Tems and Equilibrium Points – Concepts of Stability – Linearization of Solvect Method – Positive definite Functions and Lyapur Dint Theorems – Invariant Set Theorems – LTI System Anal rect Method; Krasovski's Method – Variable Gradient Method based on Lyapunov's Direct Method. FEEDBACK LINEARIZATION earization and the Canonical Form–Mathematical Tools of SISO Systems – input–Output Linearization of SISO Systems	ition nov ysis – P – Ii ; Ge abili	it cy i and Fun bas Phys nput energy	vcles	s ir 9 0 0 0 0 0 0 0 0 0 0 0 0 0
Extension – Ex MATLAB. UNIT – III Nonlinear Syst Stability; Lyapu Equilibrium Po Lyapunov's Din Control Design UNIT – IV Feedback Line Linearization o Linear Input – Tracking – Inve	LYAPUNOV THEORY tems and Equilibrium Points – Concepts of Stability – Linearization and Lyapurov's Direct Method – Positive definite Functions and Lyapurovint Theorems – Invariant Set Theorems – LTI System Analarect Method; Krasovski's Method – Variable Gradient Method based on Lyapunov's Direct Method. FEEDBACK LINEARIZATION earization and the Canonical Form–Mathematical Tools of SISO Systems – input–Output Linearization of SISO Systems – Stability – United Stability – Linearization – Normal Forms – The Zero–Dynamics – Stability – Linearization – Stability – Linearization – Stability – Linearization – Normal Forms – The Zero–Dynamics – Stability – Linearization – Stability – Linearizat	ition nov ysis – P – Ii ; Ge abili	it cy i and Fun bas Phys nput energi zatio	vcles	s ir 9 0 0 0 y - 9 ate g ate and 1 0
Extension – Ex MATLAB. UNIT – III Nonlinear Syst Stability; Lyapu Equilibrium Po Lyapunov's Din Control Design UNIT – IV Feedback Line Linearization o Linear Input – Tracking – Inve	Additional Section 2015 And Additional Section 2015 Additional Sectional Section 2015 Additional Sectional Section 2015 Additional Sectional Sectional Section 2015 Additional Sectional Sectiona Sectional Sectio	ition nov ysis – P – Ii ; Ge abili	it cy i and Fun bas Phys nput energi zatio	vcles	s ir 9 0 0 0 0 0 9 3 1 0 1 0
Extension – Ex MATLAB. UNIT – III Nonlinear Syst Stability; Lyapu Equilibrium Po Lyapunov's Din Control Design UNIT – IV Feedback Line Linearization of Linear Input – Tracking – Invo MIMO System MATLAB.	LYAPUNOV THEORY eems and Equilibrium Points – Concepts of Stability – Linearization of Signature Method – Positive definite Functions and Lyapur Doint Theorems – Invariant Set Theorems – LTI System Analactect Method; Krasovski's Method – Variable Gradient Method based on Lyapunov's Direct Method. FEEDBACK LINEARIZATION earization and the Canonical Form–Mathematical Tools of SISO Systems – input–Output Linearization of SISO Systems – States Dynamics and Non-Minimum -Phase Systems; Feedback Linearization of tracking	ition nov ysis – P – Ii ; Ge abili	it cy i and Fun bas Phys nput energi zatio	vcles	s ir 9 oca ons or y - 9 ate g a and ir ir
Extension – Ex MATLAB. UNIT – III Nonlinear Syst Stability; Lyapu Equilibrium Po Lyapunov's Din Control Design UNIT – IV Feedback Line Linearization o Linear Input – Tracking – Inve MIMO System MATLAB. UNIT – V	istence of Limit Cycles – Stability of limit Cycles; Simulation of LYAPUNOV THEORY eems and Equilibrium Points – Concepts of Stability – Lineariza unov's Direct Method – Positive definite Functions and Lyapu bint Theorems – Invariant Set Theorems – LTI System Anal rect Method; Krasovski's Method – Variable Gradient Method based on Lyapunov's Direct Method. FEEDBACK LINEARIZATION earization and the Canonical Form–Mathematical Tools of SISO Systems – input–Output Linearization of SISO Systems Output Relation – Normal Forms – The Zero–Dynamics – States erse Dynamics and Non-Minimum -Phase Systems; Feedback L is Zero–Dynamics and Control Design; Simulation of tracking SLIDING MODE CONTROL	ition nov ysis – P ; Ge abili inea g pr	it cy i and Fun bas Phys Phys ener zatio ariza roble	vcles	s ir 9 0 0 0 0 0 9 3 0 0 1 0 1 9 9 3 1 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1
Extension – Ex MATLAB. UNIT – III Nonlinear Syst Stability; Lyapu Equilibrium Po Lyapunov's Dir Control Design UNIT – IV Feedback Line Linearization o Linear Input – Tracking – Invo MIMO System MATLAB. UNIT – V Sliding Surfaces	istence of Limit Cycles – Stability of limit Cycles; Simulation of LYAPUNOV THEORY eems and Equilibrium Points – Concepts of Stability – Lineariza unov's Direct Method – Positive definite Functions and Lyapu oint Theorems – Invariant Set Theorems – LTI System Anal rect Method; Krasovski's Method – Variable Gradient Method based on Lyapunov's Direct Method. FEEDBACK LINEARIZATION earization and the Canonical Form–Mathematical Tools of SISO Systems – input–Output Linearization of SISO Systems Output Relation – Normal Forms – The Zero–Dynamics – Staterse Dynamics and Non-Minimum -Phase Systems; Feedback L as Zero–Dynamics and Control Design; Simulation of tracking SLIDING MODE CONTROL s – Continuous approximations of Switching Control laws – Th	ition nov ysis – P – Ii ; Ge abili inea g pr	it cy i and Fun bas Phys Phys Phys rople ariza ariza rople	vcles	s ir 9 0 0 0 9 3 1 9 9 9 9 9 9 9 9 9 9 9 9 9
Extension – Ex MATLAB. UNIT – III Nonlinear Syst Stability; Lyapu Equilibrium Po Lyapunov's Din Control Design UNIT – IV Feedback Line Linearization of Linear Input – Tracking – Inve MIMO System MATLAB. UNIT – V SlidingSurfaces	istence of Limit Cycles – Stability of limit Cycles; Simulation of LYAPUNOV THEORY eems and Equilibrium Points – Concepts of Stability – Lineariza unov's Direct Method – Positive definite Functions and Lyapu bint Theorems – Invariant Set Theorems – LTI System Anal rect Method; Krasovski's Method – Variable Gradient Method based on Lyapunov's Direct Method. FEEDBACK LINEARIZATION earization and the Canonical Form–Mathematical Tools of SISO Systems – input–Output Linearization of SISO Systems Output Relation – Normal Forms – The Zero–Dynamics – States erse Dynamics and Non-Minimum -Phase Systems; Feedback L is Zero–Dynamics and Control Design; Simulation of tracking SLIDING MODE CONTROL	ition nov ysis – P – Ii ; Ge abili inea g pr	it cy i and Fun bas Phys Phys Phys rople ariza ariza rople	vcles	s ir 9 0 0 0 0 0 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Text Books:

- 1 J. A. E. Slotine and W. Li, Applied Nonlinear control, PHI, Taiwan, 2005.
- 2 K. P. Mohandas, Modern Control Engineering, Sanguine, India, 2008.
- 3 Hasan Khalil, 'Nonlinear control', Pearson Education Limited, 2015.

Reference Books:

- 1 S H Zak, 'Systems and control', Oxford University Press, 2003.
- 2 Torkel Glad and Lennart Ljung, 'Control Theory Multivariable and Nonlinear Methods', CRC Press, 2018.
- 3 G. J. Thaler, 'Automatic control systems', Jaico publishers, 2006.

Course Outcomes (CO)

CO1 Ability to understand the phase plane analysis of non–linear systems.

CO2 Ability to understand the function–based approach to non–linear systems.

CO3 Ability to understand the stability analysis of systems using Lyapunov's theory.

CO4 Ability to understand about feedback linearization.

CO5 Ability to introduce the concept of sliding mode control.

Course					Prog	ram	Outco	omes						PS	50	
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4
CO1	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3
CO2	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3
CO3	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3
CO4	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3
C05	3	3	3	1	2	1	1	2	1	1	3	2	1	1	3	3

OPEN ELECTIVE COURSES [OEC]

OCP 101	Business Data Analytics	L	Т	Ρ	C
		3	0	0	3
Objectives					
	rstand the basics of business analytics and its life cycle.				
	nowledge about fundamental business analytics.				
	modeling for uncertainty and statistical inference.				
• To unde	rstand analytics using Hadoop and Map Reduce frameworks.				
To acqui	re insight on other analytical frameworks.				
UNIT – I	OVERVIEW OF BUSINESS ANALYTICS				C
	Drivers for Business Analytics – Applications of Business Analy	tice	Ma	rkot	
	nan Resource, Healthcare, Product Design, Service Design, Cu				
	Skills Required for a Business Analyst – Framework for Busines				
• •	ess Analytics Process.	o 7 ti	ion y t		
Suggested Acti					
	dies on applications involving business analytics.				
	ng real–time decision–making problems into hypothesis.				
	iscussion on entrepreneurial opportunities in Business Analytics	5.			
Suggested Eval	uation Methods:				
 Assignm 	ent on business scenario and business analytical life cycle proce	ess.			
 Group p 	resentation on big data applications with societal need.				
Quiz on	case studies.				
UNIT – II	ESSENTIALS OF BUSINESS ANALYTICS				9
•	tistics – Using Data – Types of Data – Data Distribution Metr			•	
-	, Mode, Range, Variance, Standard Deviation, Percentile, Qua		-		
-	rrelation – Data Visualization: Tables, Charts, Line Charts, Ba	ara	na (_oiu	m
Suggested Acti	Chart, Heat Map – Data Dashboards.				
	merical problems on basic statistics.				
	chart wizard in MS Excel Case using sample real time data for da	ata			
visualiza		αια			
	ol for data visualization.				
	uation Methods:				
••	ent on descriptive analytics using benchmark data.				
-	data visualization for univariate, bivariate data.				

UNIT – III MO	DELING UNCERTAINTY AND STATISTICAL INFERENCE	g
 Discrete Probab Inference: Data San 	ty: Events and Probabilities – Conditional Probability – Random Var ility Distributions – Continuous Probability Distribution – Stat npling – Selecting a Sample – Point Estimation – Sampling Distribut – Hypothesis Testing.	istica
Suggested Activities	5:	
•	erical problems in sampling, probability, probability distributions and	1
Hypothesis to	•	
-	eal-time decision-making problems into hypothesis.	
Suggested Evaluation		
•	on hypothesis testing.	
 Group present testing. 	ntation on real time applications involving data sampling and hypoth	iesis
Quizzes on to	ppics like sampling and probability.	
UNIT – IV ANA		g
	ALYTICS USING HADOOP AND MAPREDUCE FRAMEWORK p – RDBMS versus Hadoop – Hadoop Overview – HDFS (Ha	
Features of MapRe Relational Algebra (etem) – Processing Data with Hadoop – Introduction to MapRed educe – Algorithms Using Map–Reduce: Matrix–Vector Multiplic Operations, Grouping and Aggregation – Extensions to MapReduce. s:	
Features of MapRe Relational Algebra (Suggested Activitie Practical – In Practical – Us Practical – D	educe – Algorithms Using Map–Reduce: Matrix–Vector Multiplic Operations, Grouping and Aggregation – Extensions to MapReduce. s: stall and configure Hadoop. se web–based tools to monitor Hadoop setup. esign and develop MapReduce tasks for word count, searching inv	atior
Features of MapRe Relational Algebra (Suggested Activities Practical – In Practical – Us Practical – D text corpus e	educe – Algorithms Using Map–Reduce: Matrix–Vector Multiplic Operations, Grouping and Aggregation – Extensions to MapReduce. s: stall and configure Hadoop. se web–based tools to monitor Hadoop setup. esign and develop MapReduce tasks for word count, searching inv tc.	atior
Features of MapRe Relational Algebra (Suggested Activities Practical – In Practical – Us Practical – D	educe – Algorithms Using Map–Reduce: Matrix–Vector Multiplic Operations, Grouping and Aggregation – Extensions to MapReduce. s: stall and configure Hadoop. se web–based tools to monitor Hadoop setup. esign and develop MapReduce tasks for word count, searching inv tc.	atior
Features of MapRe Relational Algebra (Suggested Activities • Practical – In • Practical – Us • Practical – D text corpus e Suggested Evaluation	educe – Algorithms Using Map–Reduce: Matrix–Vector Multiplic Operations, Grouping and Aggregation – Extensions to MapReduce. s: stall and configure Hadoop. se web–based tools to monitor Hadoop setup. esign and develop MapReduce tasks for word count, searching inv tc.	atior
Features of MapRe Relational Algebra (Suggested Activities Practical – In Practical – Us Practical – D text corpus e Suggested Evaluation	educe – Algorithms Using Map–Reduce: Matrix–Vector Multiplic Operations, Grouping and Aggregation – Extensions to MapReduce. s: stall and configure Hadoop. se web–based tools to monitor Hadoop setup. esign and develop MapReduce tasks for word count, searching inv tc.	atior
Features of MapRe Relational Algebra (Suggested Activities Practical – In Practical – Us Practical – D text corpus e Suggested Evaluation Quizzes on to	educe – Algorithms Using Map–Reduce: Matrix–Vector Multiplic Operations, Grouping and Aggregation – Extensions to MapReduce. s: stall and configure Hadoop. se web–based tools to monitor Hadoop setup. esign and develop MapReduce tasks for word count, searching inv tc. on Methods: the practical implementations. opics like HDFS and extensions to MapReduce.	atior
FeaturesofMapReRelational Algebra (ControlSuggested ActivitiesPractical – InPractical – UsPractical – Dtext corpus esSuggested EvaluationEvaluation ofQuizzes on toUNIT – VOverview of ApplicaLanguage (HQL) – In	educe – Algorithms Using Map–Reduce: Matrix–Vector Multiplic Operations, Grouping and Aggregation – Extensions to MapReduce. s: stall and configure Hadoop. se web–based tools to monitor Hadoop setup. esign and develop MapReduce tasks for word count, searching inv tc. on Methods: the practical implementations.	atior olvin
FeaturesofMapReRelational Algebra (ControlSuggested Activities•Practical – In•Practical – Us•Practical – D•Practical – Dtext corpus esSuggested Evaluation•Evaluation of•Quizzes on toUNIT – VOTHOverview of ApplicaLanguage (HQL) – InSpark, Cloudera Imp	educe – Algorithms Using Map–Reduce: Matrix–Vector Multiplic Operations, Grouping and Aggregation – Extensions to MapReduce. S: stall and configure Hadoop. Se web–based tools to monitor Hadoop setup. esign and develop MapReduce tasks for word count, searching invitc. On Methods: The practical implementations. Opics like HDFS and extensions to MapReduce. HER DATA ANALYTICAL FRAMEWORKS ation development Languages for Hadoop – PigLatin – Hive – Hive htroduction to Pentaho, JAQL – Introduction to Apache: Sqoop, Drivala – Introduction to NoSQL Databases – Hbase and MongoDB.	atior olvin
Features of MapRe Relational Algebra (Suggested Activities Practical – In Practical – Us Practical – D text corpus e Suggested Evaluation Evaluation of Quizzes on to UNIT – V OTH Overview of Applica Language (HQL) – In Spark, Cloudera Imp Suggested Activities	educe – Algorithms Using Map–Reduce: Matrix–Vector Multiplic Operations, Grouping and Aggregation – Extensions to MapReduce. S: stall and configure Hadoop. Se web–based tools to monitor Hadoop setup. esign and develop MapReduce tasks for word count, searching invitc. On Methods: The practical implementations. Opics like HDFS and extensions to MapReduce. HER DATA ANALYTICAL FRAMEWORKS ation development Languages for Hadoop – PigLatin – Hive – Hive htroduction to Pentaho, JAQL – Introduction to Apache: Sqoop, Drivala – Introduction to NoSQL Databases – Hbase and MongoDB.	atior olvin
Features of MapRe Relational Algebra (Suggested Activities 	educe – Algorithms Using Map–Reduce: Matrix–Vector Multiplic Operations, Grouping and Aggregation – Extensions to MapReduce. s: stall and configure Hadoop. se web–based tools to monitor Hadoop setup. esign and develop MapReduce tasks for word count, searching inv tc. on Methods: the practical implementations. opics like HDFS and extensions to MapReduce. HER DATA ANALYTICAL FRAMEWORKS ation development Languages for Hadoop – PigLatin – Hive – Hive htroduction to Pentaho, JAQL – Introduction to Apache: Sqoop, Driv bala – Introduction to NoSQL Databases – Hbase and MongoDB. s:	olvin
Features of MapRe Relational Algebra (Suggested Activities Practical – In Practical – Us Practical – D text corpus e Suggested Evaluation Evaluation of Quizzes on to UNIT – V OTH Overview of Applica Language (HQL) – In Spark, Cloudera Imp Suggested Activities Practical – In Practical – De	educe – Algorithms Using Map–Reduce: Matrix–Vector Multiplic Operations, Grouping and Aggregation – Extensions to MapReduce. s: stall and configure Hadoop. se web–based tools to monitor Hadoop setup. esign and develop MapReduce tasks for word count, searching invite. on Methods: the practical implementations. opics like HDFS and extensions to MapReduce. HER DATA ANALYTICAL FRAMEWORKS ation development Languages for Hadoop – PigLatin – Hive – Hive for htroduction to Pentaho, JAQL – Introduction to Apache: Sqoop, Dri bala – Introduction to NoSQL Databases – Hbase and MongoDB. s: stallation of NoSQL database like MongoDB.	olvin
Features of MapRe Relational Algebra (Suggested Activities Practical – In Practical – Us Practical – D text corpus e Suggested Evaluation Evaluation of Quizzes on to UNIT – V OTH Overview of Applica Language (HQL) – In Spark, Cloudera Imp Suggested Activities Practical – In Practical – In Practical – In	educe – Algorithms Using Map–Reduce: Matrix–Vector Multiplic Operations, Grouping and Aggregation – Extensions to MapReduce. s: stall and configure Hadoop. se web–based tools to monitor Hadoop setup. esign and develop MapReduce tasks for word count, searching invite. on Methods: if the practical implementations. opics like HDFS and extensions to MapReduce. HER DATA ANALYTICAL FRAMEWORKS ation development Languages for Hadoop – PigLatin – Hive – Hive of throduction to Pentaho, JAQL – Introduction to Apache: Sqoop, Dri opala – Introduction to NoSQL Databases – Hbase and MongoDB. s: stallation of NoSQL database like MongoDB. emonstration on Sharding in MongoDB.	olvin

Suggested Evaluation Methods:

• Mini Project (Group) – Real time data collection, saving in NoSQL, implement analytical techniques using Map–Reduce Tasks and Result Projection

Total Periods: 45

- 1. Vignesh Prajapati, 'Big Data Analytics with R and Hadoop', Packt Publishing, 2013.
- 2. Umesh R Hodeghatta, Umesha Nayak, 'Business Analytics Using R A Practical Approach', A press, 2017.
- 3. Anand Rajaraman, Jeffrey David Ullman, 'Mining of Massive Datasets', Cambridge University Press, 2012.
- 4. Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R. Anderson, 'Essentials of Business Analytics', Cengage Learning, second Edition, 2016.
- 5. U. Dinesh Kumar, 'Business Analytics: The Science of Data–Driven Decision Making', Wiley, 2017.
- 6. A. Ohri, 'R for Business Analytics', Springer, 2012
- 7. Rui Miguel Forte, 'Mastering Predictive Analytics with R', Packt Publication, 2015.

Course	Course Outcomes (CO)									
CO1	Identify the real-world business problems and model with analyt	ical solutions.								
CO2	Solve analytical problem with relevant mathematics background	knowledge.								
CO3	Convert any real–world decision–making problem to hypothesis statistical testing.	s and apply suitable								
CO4	Write and demonstrate simple applications involving analytics MapReduce	using Hadoop and								
CO5	Use open–source frameworks for modeling and storing data visualization technique using R for visualizing voluminous data	and apply suitable								
	rse Program Outcomes	PSO								

Course					Prog	ram	Outco	omes						PS	50	
Outcomes	а	b	С	d	е	f	g	h	i	j	k	-	1	2	3	4
CO1	3	3	3	3	2	2	1	1	2	1	2	1	2	2	2	1
CO2	3	3	3	3	2	2	1	1	2	1	2	1	2	2	2	1
CO3	3	3	3	3	2	2	1	1	2	1	2	1	2	2	2	1
CO4	3	3	3	3	2	2	1	1	2	1	2	1	2	2	2	1
C05	3	3	3	3	3	2	1	1	2	1	2	1	2	2	2	1

OMF 101	INDUSTRIAL SAFETY	L	Т	Ρ	С
		3	0	0	3
- I I					
Objectives					
	rize basics of industrial safety				
	e fundamentals of maintenance engineering wear and corrosion				
•	e fault tracing				
	preventive and periodic maintenance				
• identity					
UNIT – I	INTRODUCTION				ç
-	es, types, results and control, mechanical and electrical hazards,	+\/r	000	<u></u>	
•	e steps / procedure, describe salient points of factories act 1948				
•	poms, drinking water layouts, light, cleanliness, fire, guarding, pre or codes. Fire prevention and firefighting, equipment and method		ire v	9556	215
etc, Salety con	of codes. Fire prevention and mengitting, equipment and method	15.			
UNIT – II	FUNDAMENTALS OF MAINTENANCE ENGINEERING				ç
Definition and	aim of maintenance engineering, Primary and secondary	fund	ctior	ns a	n
responsibility	of maintenance department, Types of maintenance, Types and a				
	of maintenance department, Types of maintenance, Types and a maintenance, Maintenance cost & its relation with replacem	ppl	icat	ions	0
	maintenance, Maintenance cost & its relation with replacem	ppl	icat	ions	0
tools used for Service life of	maintenance, Maintenance cost & its relation with replacem equipment.	ppl	icat	ions	o ny
tools used for Service life of UNIT – III	maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION	ent	icat ecc	ions onor	o ny g
tools used for Service life of UNIT – III Wear– types,	 maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants-types and 	ent	icat ecc	ions onor	o ny <u>g</u>
tools used for Service life of UNIT – III Wear– types, Lubrication m	maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants-types and ethods, general sketch, working and applications, i. Screw dow	ippl ent l ap	icat ecc oplic	ions onon atio	o ny <u>y</u> ns
tools used for Service life of o UNIT – III Wear– types, Lubrication mail. Pressure gree	 maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants-types and ethods, general sketch, working and applications, i. Screw dow ease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick females 	I ap ent	icat ecc oplic reas lubr	ions onon atio se cu icati	o ny ns ns
tools used for Service life of UNIT – III Wear– types, Lubrication m ii. Pressure gre vi. Side feed l	 maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants-types and ethods, general sketch, working and applications, i. Screw dow ease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feubrication, vii. Ring lubrication, Definition, principle and factors 	I ap ent	icat ecc oplic reas lubr	ions onon atio se cu icati	o ny ns ns
tools used for Service life of UNIT – III Wear– types, Lubrication m ii. Pressure gre vi. Side feed l	 maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants-types and ethods, general sketch, working and applications, i. Screw dow ease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick females 	I ap ent	icat ecc oplic reas lubr	ions onon atio se cu icati	o ny ns ns
tools used for Service life of a UNIT – III Wear– types, Lubrication ma ii. Pressure gra vi. Side feed I corrosion. Typ	 maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants-types and ethods, general sketch, working and applications, i. Screw dow ease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick fe ubrication, vii. Ring lubrication, Definition, principle and factors es of corrosion, corrosion prevention methods. 	I ap ent	icat ecc oplic reas lubr	ions onon atio se cu icati	o ny ny ioi ioi
tools used for Service life of o UNIT – III Wear– types, Lubrication m ii. Pressure gre vi. Side feed l corrosion. Typ UNIT – IV	 maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants-types and ethods, general sketch, working and applications, i. Screw dow ease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick fe ubrication, vii. Ring lubrication, Definition, principle and factors es of corrosion, corrosion prevention methods. FAULT TRACING 	I ar ed aff	icat ecc oplic reas lubr fecti	ions phon atio se cu icati ng t	
tools used for Service life of o UNIT – III Wear– types, Lubrication m ii. Pressure gre vi. Side feed l corrosion. Typ UNIT – IV Fault tracing–	maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants-types and ethods, general sketch, working and applications, i. Screw dow ease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feubrication, vii. Ring lubrication, Definition, principle and factors es of corrosion, corrosion prevention methods. FAULT TRACING concept and importance, decision tree concept, need and	l applent	icat ecc oplic reas lubr fecti	ions onor atio se cu icati ng t atio	o ny ns ioi ihi ns
tools used for Service life of o UNIT – III Wear– types, Lubrication m ii. Pressure gre vi. Side feed l corrosion. Typ UNIT – IV Fault tracing– sequence of fa	maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants-types and ethods, general sketch, working and applications, i. Screw dow ease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick fe ubrication, vii. Ring lubrication, Definition, principle and factors es of corrosion, corrosion prevention methods. FAULT TRACING concept and importance, decision tree concept, need and oult-finding activities, show as decision tree, draw decision tree for the second tree concept.	I ar I ar n g ed af ar por p	icat ecc oplic reas lubr fecti oplic rob	ions onon atio se cu icati ng t atio	o ny ns ioi ihi ns i ii
tools used for Service life of o UNIT – III Wear– types, Lubrication m ii. Pressure gre vi. Side feed l corrosion. Typ UNIT – IV Fault tracing– sequence of fa machine tools	maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants-types and ethods, general sketch, working and applications, i. Screw dow ease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feubrication, vii. Ring lubrication, Definition, principle and factors es of corrosion, corrosion prevention methods. FAULT TRACING concept and importance, decision tree concept, need and	I applent	icat ecc oplic reas lubr fecti oplic rob	ions onon atio se cu icati ng t atio lems like	o ny ns ion ion ion ion ion ion ion ion ion ion
tools used for Service life of o UNIT – III Wear– types, Lubrication m ii. Pressure gre vi. Side feed I corrosion. Typ UNIT – IV Fault tracing– sequence of fa machine tools Any one mach	maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants-types and ethods, general sketch, working and applications, i. Screw dow ease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feubrication, vii. Ring lubrication, Definition, principle and factors es of corrosion, corrosion prevention methods. FAULT TRACING concept and importance, decision tree concept, need and nult-finding activities, show as decision tree, draw decision tree for hydraulic, pneumatic, automotive, thermal and electrical equip	I applent	icat ecc oplic reas lubr fecti oplic rob	ions onon atio se cu icati ng t atio lems like	o ny ns io io ; in ; ; ; ;
tools used for Service life of o UNIT – III Wear– types, Lubrication m ii. Pressure gre vi. Side feed I corrosion. Typ UNIT – IV Fault tracing– sequence of fa machine tools Any one mach	maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants-types and ethods, general sketch, working and applications, i. Screw dow ease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feubrication, vii. Ring lubrication, Definition, principle and factors es of corrosion, corrosion prevention methods. FAULT TRACING concept and importance, decision tree concept, need and pult-finding activities, show as decision tree, draw decision tree for, hydraulic, pneumatic, automotive, thermal and electrical equip ine tool, ii. Pump iii. Air compressor, iv. Internal combustion engineering	I applent	icat ecc oplic reas lubr fecti oplic rob	ions onon atio se cu icati ng t atio lems like	o ny ns ion ion ion ion ion ion ion ion ion ion
tools used for Service life of o UNIT – III Wear– types, Lubrication m ii. Pressure gre vi. Side feed I corrosion. Typ UNIT – IV Fault tracing– sequence of fa machine tools Any one mach	maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants-types and ethods, general sketch, working and applications, i. Screw dow ease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feubrication, vii. Ring lubrication, Definition, principle and factors es of corrosion, corrosion prevention methods. FAULT TRACING concept and importance, decision tree concept, need and pult-finding activities, show as decision tree, draw decision tree for, hydraulic, pneumatic, automotive, thermal and electrical equip ine tool, ii. Pump iii. Air compressor, iv. Internal combustion engineering	I applent	icat ecc oplic reas lubr fecti oplic rob	ions onon atio se cu icati ng t atio lems like	o ny ns io io ; in ; ; ; ;
tools used for Service life of o UNIT – III Wear– types, Lubrication m ii. Pressure gre vi. Side feed l corrosion. Typ UNIT – IV Fault tracing- sequence of fa machine tools Any one mach vi. Electrical m	 maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants—types and ethods, general sketch, working and applications, i. Screw dow ease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feubrication, vii. Ring lubrication, Definition, principle and factors es of corrosion, corrosion prevention methods. FAULT TRACING concept and importance, decision tree concept, need and nult—finding activities, show as decision tree, draw decision tree for, hydraulic, pneumatic, automotive, thermal and electrical equip ine tool, ii. Pump iii. Air compressor, iv. Internal combustion engotors, Types of faults in machine tools and their general causes. 	ippl ent l ap ed ap or p ome gine	icat ecc oplic reas lubr fecti oplic rob ent's e, v.	ions phon atio atio icati ng t like Boil	ony ny ioi ini ini ini ini ini ini ini ini ini
tools used for Service life of o UNIT – III Wear– types, Lubrication me ii. Pressure gre vi. Side feed I corrosion. Typ UNIT – IV Fault tracing– sequence of fa machine tools Any one mach vi. Electrical m UNIT – V Periodic inspe	 maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants-types and ethods, general sketch, working and applications, i. Screw dow ease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feubrication, vii. Ring lubrication, Definition, principle and factors es of corrosion, corrosion prevention methods. FAULT TRACING concept and importance, decision tree concept, need and nult-finding activities, show as decision tree, draw decision tree for, hydraulic, pneumatic, automotive, thermal and electrical equipine tool, ii. Pump iii. Air compressor, iv. Internal combustion engotors, Types of faults in machine tools and their general causes. 	I applent	icat ecc oplic reas lubr fecti oplic rob ent's e, v.	ions onon aatio se cu icati ng t aatio like Boil	ony ny ns ion in in in in i i i i i i i i i i i i
tools used for Service life of o UNIT – III Wear– types, Lubrication m ii. Pressure gre vi. Side feed I corrosion. Typ UNIT – IV Fault tracing- sequence of fa machine tools Any one mach vi. Electrical m UNIT – V Periodic inspe overhauling of	 maintenance, Maintenance cost & its relation with replacem equipment. WEAR AND CORROSION AND THEIR PREVENTION causes, effects, wear reduction methods, lubricants-types and ethods, general sketch, working and applications, i. Screw dow ease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feubrication, vii. Ring lubrication, Definition, principle and factors es of corrosion, corrosion prevention methods. FAULT TRACING concept and importance, decision tree concept, need and nult-finding activities, show as decision tree, draw decision tree for, hydraulic, pneumatic, automotive, thermal and electrical equipine tool, ii. Pump iii. Air compressor, iv. Internal combustion engotors, Types of faults in machine tools and their general causes. PERIODIC AND PREVENTIVE MAINTENANCE ection-concept and need, degreasing, cleaning and repain 	ipplent ent l appled appled appr pome gine ing mo	icat ecc oplic reas lubr fecti oplic rob ent's e, v. scl n tr	ions phon atio atio se cu icati ng t like Boil Boil	ony ny ns ins ins ins ins ins ins ins ins ins

maintenance of: i. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Total Periods: 45

Reference Books:

1. Audels, 'Pump-hydraulic Compressors', Mcgrew Hill Publication, 1978.

2. H. P. Garg, 'Maintenance Engineering', S. Chand and Company, 1987.

3. Hans F. Winterkorn, 'Foundation Engineering Handbook', Chapman & Hall London, 2013.

4. Higgins & Morrow,' Maintenance Engineering Handbook', Eighth Edition, 2008.

Course Outcomes (CO)								
CO1	Ability to summarize basics of industrial safety							
CO2	Ability to describe fundamentals of maintenance engineering							
CO3	Ability to explain wear and corrosion							
CO4	Ability to illustrate fault tracing							
CO5	Ability to identify preventive and periodic maintenance							

Course		Program Outcomes													50	
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4
CO1	3	2	2	2	1	2	2	1	1	1	1	2	3	2	2	1
CO2	3	2	2	2	1	2	2	1	2	1	1	2	3	2	2	1
CO3	3	3	3	2	1	2	2	1	1	1	1	2	3	2	2	1
CO4	3	3	3	2	1	2	2	1	2	1	1	2	3	2	2	1
C05	3	3	3	2	1	2	2	1	2	1	1	2	3	2	2	1

OMB 103	COST MANAGEMENT OF ENGINEERING PROJECTS	L	Т	Р	С
		3	0	0	3
					L
Objectives					
• Summarize	the costing concepts and their role in decision making				
• Infer the pro	pject management concepts and their various aspects in selecti	on			
• Interpret co	sting concepts with project execution				
Develop kno	wledge of costing techniques in service sector and various bud	geta	ary c	onti	ol
techniques					
• Illustrate wi	th quantitative techniques in cost management				
UNIT – I	INTRODUCTION TO COSTING CONCEPTS				9
,	Costing System; Cost concepts in decision-making; Relevant co				
cost, Increment	al cost and Opportunity cost; Creation of a Database for operation	tion	al co	ntro)I.
UNIT – II	INTRODUCTION TO PROJECT MANAGEMENT				9
	ng, Different types, why to manage, cost overruns centres, va			0	
	on: conception to commissioning. Project execution as con				
	nontechnical activities, Detailed Engineering activities, Pre pro	-			
	s and documents, Project team: Role of each member, Impo	orta	nce	Proj	ect
site: Data requi	red with significance, Project contracts.				
UNIT – III	PROJECT EXECUTION AND COSTING CONCEPTS				9
-	tion Project cost control, Bar charts and Network dia	-		-	
-	mechanical and process, Cost Behavior and Profit Planning Ma ween Marginal Costing and Absorption Costing, Brook, even	-			-
	ween Marginal Costing and Absorption Costing; Break–even Analysis, Various decision–making problems, Pricing stra				
	costing, Life Cycle Costing.	tegi	es.	Pdi	elo
Analysis, Targe	Costing, Life Cycle Costing.				
UNIT – IV	COSTING OF SERVICE SECTOR AND BUDGETERY CONTROL				9
	pproach, Material Requirement Planning, Enterprise Reso	urce	P	anni	_
	Cost Management, Bench Marking; Balanced Score Card an				
•	tary Control: Flexible Budgets; Performance budgets; Zero–bas				
	, , , , , , , , , , , , , , , , , , , ,		<u> </u>	, <u> </u>	
UNIT – V	QUANTITATIVE TECHNIQUES FOR COST MANAGEMENT				9
Linear Program	ming, PERT/CPM, Transportation problems, Assignment prob	lem	s, Le	earn	ing
Curve Theory.					5
	Total P	erio	ds:	4	5
	83				

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119 (An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

- 1. Ashish K. Bhattacharya, 'Principles & Practices of Cost Accounting' A. H. Wheeler publisher, 1991.
- 2. Charles T. Horngren and George Foster, 'Advanced Management Accounting', Pearson Prentice Hall, 1988.
- 3. Charles T. Horngren et. Al. 'Cost Accounting A Managerial Emphasis', Prentice Hall of India, New Delhi, 2011.
- 4. Robert S Kaplan and Anthony A. Alkinson, 'Management & Cost Accounting', Pearson Prentice Hall, 2003.
- 5. N. D. Vohra, 'Quantitative Techniques in Management', Tata McGraw Hill Book Co. Ltd, 2007.

Course	Outc	omes	; (CO)														
CO1	Unde	Understand the costing concepts and their role in decision making															
CO2	Unde	Understand the project management concepts and their various aspects in selection															
CO3	Inter	Interpret costing concepts with project execution															
CO4	Gain	Gain knowledge of costing techniques in service sector and various budgetary															
	cont	control techniques															
CO5	Beco	me f	amilia	ar wit	h qu	antita	ative	techr	nique	s in co	ost m	anag	gemer	nt			
Cou	rse					Prog	ram	Outco	omes	-					PS	50	
Outco	mes	а	b	С	d	е	f	g	h	i	J	k	I	1	2	3	4
со	1	3	3	3	2	3	2	2	3	3	1	3	3	2	2	2	1
со	2	З	3	З	2	3	2	1	2	3	1	3	3	2	2	2	1
со	3	3 3 3 3 2 3 3 1 2 2 1 3 3 2 1 1															
CO	4	3	3	3	2	3	2	3	1	2	1	3	3	2	2	1	1
С0	5	3	3	3	2	3	3	3	1	2	1	3	3	2	2	1	1

OMF 102	COMPOSITE MATERIALS	L	Т	Ρ	С
		3	0	0	3
Objectives					
• Summarize	the characteristics of composite materials and effect of reir	nfor	cem	nent	: ir
composite r	materials.				
•	various reinforcements used in composite materials.				
	ne manufacturing process of metal matrix composites.				
	the manufacturing processes of polymer matrix composites.				
Analyze the	e strength of composite materials.				
					9
	lassification and characteristics of Composite materials – Ad		-		
••	composites – Functional requirements of reinforcement and ma				
reinforcement	(size, shape, distribution, volume fraction) on overall composite	per	forr	nan	ce.
UNIT – II	REINFORCEMENTS				9
Preparation-la	yup, curing, properties and applications of glass fibers, carbon	n fib	ers,	Ke	<i>r</i> lar
fibers and Bord	on fibers – Properties and applications of whiskers, particle reir	nfor	cen	nent	
	on fibers – Properties and applications of whiskers, particle reir havior of composites: Rule of mixtures, Inverse rule of mixtures -				:s –
	havior of composites: Rule of mixtures, Inverse rule of mixtures -				:s –
Mechanical Bel	havior of composites: Rule of mixtures, Inverse rule of mixtures -				:s –
Mechanical Bel	havior of composites: Rule of mixtures, Inverse rule of mixtures -				and
Mechanical Bel Isostress condit UNIT – III	havior of composites: Rule of mixtures, Inverse rule of mixtures - tions.	– Iso	ostra	ain a	:s – and 9
Mechanical Bel Isostress condit UNIT – III Casting – Solid	havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES	– Iso Prop	ostra oert	ain a	and 9
Mechanical Bel Isostress condit UNIT – III Casting – Solid applications. M	havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES State diffusion technique – Cladding – Hot Isostatic pressing – F	– Iso Prop	ostra oert on –	ain a ies a - Liq	s – and 9 and uid
Mechanical Bel Isostress condit UNIT – III Casting – Solid applications. M	havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES State diffusion technique – Cladding – Hot Isostatic pressing – F Ianufacturing of Ceramic Matrix Composites: Liquid Metal Infiltr g. Manufacturing of Carbon – Carbon composites: Knitting, Brain	– Iso Prop	ostra oert on –	ain a ies a - Liq	and 9 uid
Mechanical Bel Isostress condit UNIT – III Casting – Solid applications. M phase sintering	havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES State diffusion technique – Cladding – Hot Isostatic pressing – F Ianufacturing of Ceramic Matrix Composites: Liquid Metal Infiltr g. Manufacturing of Carbon – Carbon composites: Knitting, Brain	– Iso Prop	ostra oert on –	ain a ies a - Liq	and 9 uid
Mechanical Bel Isostress condit UNIT – III Casting – Solid applications. M phase sintering	havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES State diffusion technique – Cladding – Hot Isostatic pressing – F Ianufacturing of Ceramic Matrix Composites: Liquid Metal Infiltr g. Manufacturing of Carbon – Carbon composites: Knitting, Brain	– Iso Prop	ostra oert on –	ain a ies a - Liq	ss – and 9 and uid ving
Mechanical Bel Isostress condit UNIT – III Casting – Solid applications. M phase sintering – Properties an UNIT – IV	havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES State diffusion technique – Cladding – Hot Isostatic pressing – F Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltr g. Manufacturing of Carbon – Carbon composites: Knitting, Brain ad applications.	– Iso Prop ratio iding	ostra oert on – g, W	ies a - Liq /eav	s – and 9 and uid ving
Mechanical Bel Isostress condit UNIT – III Casting – Solid applications. M phase sintering – Properties an UNIT – IV Preparation of	havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES State diffusion technique – Cladding – Hot Isostatic pressing – F Ianufacturing of Ceramic Matrix Composites: Liquid Metal Infiltr g. Manufacturing of Carbon – Carbon composites: Knitting, Brain applications. MANUFACTURING OF POLYMER MATRIX COMPOSITES	– Iso Prop ratio iding	ostra oert on – g, W	ies a - Liq /eav	s – and 9 and uid ving 9 nod
Mechanical Bel Isostress condit UNIT – III Casting – Solid applications. M phase sintering – Properties an UNIT – IV Preparation of	 havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES State diffusion technique – Cladding – Hot Isostatic pressing – F Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltr Manufacturing of Carbon – Carbon composites: Knitting, Brain Manufactions. MANUFACTURING OF POLYMER MATRIX COMPOSITES Moulding compounds and prepregs – hand layup method – Autominding method – Compression moulding – Reaction injection	– Iso Prop ratio iding	ostra oert on – g, W	ies a - Liq /eav	ss – and 9 and uid ving 9 nod
Mechanical Bel Isostress condit UNIT – III Casting – Solid applications. M phase sintering – Properties an UNIT – IV Preparation of – Filament wi	 havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES State diffusion technique – Cladding – Hot Isostatic pressing – F Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltr Manufacturing of Carbon – Carbon composites: Knitting, Brain Manufactions. MANUFACTURING OF POLYMER MATRIX COMPOSITES Moulding compounds and prepregs – hand layup method – Autominding method – Compression moulding – Reaction injection	– Iso Prop ratio iding	ostra oert on – g, W	ies a - Liq /eav	s – and 9 and uid ving 9 nod
Mechanical Bel Isostress condit UNIT – III Casting – Solid applications. M phase sintering – Properties an UNIT – IV Preparation of – Filament wi	 havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES State diffusion technique – Cladding – Hot Isostatic pressing – F Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltr Manufacturing of Carbon – Carbon composites: Knitting, Brain Manufactions. MANUFACTURING OF POLYMER MATRIX COMPOSITES Moulding compounds and prepregs – hand layup method – Autominding method – Compression moulding – Reaction injection	– Iso Prop ratio iding	ostra oert on – g, W	ies a - Liq /eav	s – anc anc uic ving 9 noc g –
Mechanical Bel Isostress condit UNIT – III Casting – Solid applications. M phase sintering – Properties an UNIT – IV Preparation of – Filament wi Properties and UNIT – V	havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES State diffusion technique – Cladding – Hot Isostatic pressing – F Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltr g. Manufacturing of Carbon – Carbon composites: Knitting, Brain Manufacturing of Carbon – Carbon – Carbon composites: Knitting, Brain Manufact	– Iso Prop ratio iding ocla	ostra oert on – g, W ve r noul	ain a ies a - Liq /eav	s – and 9 and uid ving 9 nod g – 9
Mechanical Bel Isostress condit UNIT – III Casting – Solid applications. M phase sintering – Properties and UNIT – IV Preparation of – Filament wi Properties and UNIT – V Laminar Failure	havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES State diffusion technique – Cladding – Hot Isostatic pressing – F Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltr g. Manufacturing of Carbon – Carbon composites: Knitting, Brain MANUFACTURING OF POLYMER MATRIX COMPOSITES Moulding compounds and prepregs – hand layup method – Autor inding method – Compression moulding – Reaction injection applications.	– Iso Prop ratio idin ocla n n stra	ostra oert on – g, W ve r noul	ain a ies a - Liq /eav neth ding	s – and uid ving 9 nod g – 9 ria,
Mechanical Bel Isostress condit UNIT – III Casting – Solid applications. M phase sintering – Properties and UNIT – IV Preparation of – Filament wi Properties and UNIT – V Laminar Failure interacting faile	havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES State diffusion technique – Cladding – Hot Isostatic pressing – F Anufacturing of Ceramic Matrix Composites: Liquid Metal Infiltr g. Manufacturing of Carbon – Carbon composites: Knitting, Braid MANUFACTURING OF POLYMER MATRIX COMPOSITES Moulding compounds and prepregs – hand layup method – Autor inding method – Compression moulding – Reaction injection applications. STRENGTH e Criteria–strength ratio, maximum stress criteria, maximum stress	- Iso Prop ratio iding ocla n n stra sigh	ostra oert on – g, W ve r noul in c	ain a ies a - Liq /eav meth ding	s – and uid ving 9 nod g – 9 ria, gth;
Mechanical Bel Isostress condit UNIT – III Casting – Solid applications. M phase sintering – Properties and UNIT – IV Preparation of – Filament wi Properties and UNIT – V Laminar Failure interacting faile Laminate strem	havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES State diffusion technique – Cladding – Hot Isostatic pressing – F Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltr g. Manufacturing of Carbon – Carbon composites: Knitting, Brain d applications. MANUFACTURING OF POLYMER MATRIX COMPOSITES Moulding compounds and prepregs – hand layup method – Autor inding method – Compression moulding – Reaction injection applications. STRENGTH e Criteria–strength ratio, maximum stress criteria, maximum sure criteria, hygrothermal failure. Laminate first play failure–ins	- Iso Prop ratio iding ocla n n stra sigh	ostra oert on – g, W ve r noul in c	ain a ies a - Liq /eav meth ding	s – and uid ving 9 nod g – 9 ria, gth;
Mechanical Bel Isostress condit UNIT – III Casting – Solid applications. M phase sintering – Properties and UNIT – IV Preparation of – Filament wi Properties and UNIT – V Laminar Failure interacting faile Laminate strem	havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES State diffusion technique – Cladding – Hot Isostatic pressing – F Anufacturing of Ceramic Matrix Composites: Liquid Metal Infiltr g. Manufacturing of Carbon – Carbon composites: Knitting, Brain ad applications. MANUFACTURING OF POLYMER MATRIX COMPOSITES Moulding compounds and prepregs – hand layup method – Autor inding method – Compression moulding – Reaction injection applications. STRENGTH e Criteria–strength ratio, maximum stress criteria, maximum sure criteria, hygrothermal failure. Laminate first play failure–ins mgth–ply discount truncated maximum strain criterion; strength	- Iso Prop ratio iding ocla n n stra sigh	ostra oert on – g, W ve r noul in c	ain a ies a - Liq /eav meth ding	s – and 9 and uid ring 9 nod g – 9 ria, gth;
Mechanical Bel Isostress condit UNIT – III Casting – Solid applications. M phase sintering – Properties and UNIT – IV Preparation of – Filament wi Properties and UNIT – V Laminar Failure interacting faile Laminate strem	havior of composites: Rule of mixtures, Inverse rule of mixtures - tions. MANUFACTURING OF METAL MATRIX COMPOSITES State diffusion technique – Cladding – Hot Isostatic pressing – F Anufacturing of Ceramic Matrix Composites: Liquid Metal Infiltr g. Manufacturing of Carbon – Carbon composites: Knitting, Brain ad applications. MANUFACTURING OF POLYMER MATRIX COMPOSITES Moulding compounds and prepregs – hand layup method – Autor inding method – Compression moulding – Reaction injection applications. STRENGTH e Criteria–strength ratio, maximum stress criteria, maximum sure criteria, hygrothermal failure. Laminate first play failure–ins mgth–ply discount truncated maximum strain criterion; strength	- Iso Prop ratio iding ocla n n stra sigh h de	ostra oert on – g, W ve r noul in c in c it sti esigr	ain a ies a - Liq /eav meth ding	s – and 9 and uid ving 9 nod g – 9 ria, gth;

- 1. R. W. Cahn, 'Material Science and Technology', Vol. 13, Composites, VCH, West Germany.
- 2. Callister, W.D Jr., Adapted by Balasubramaniam R, 'Materials Science and Engineering, An introduction', John Wiley & Sons, NY, Indian edition, 2007.
- 3. K. K. Chawla, 'Composite Materials', 2013.
- 4. G. Lubin, Hand Book of Composite Materials, 2013.

Course Outcomes (CO)

CO1	Know the characteristics of composite materials and effect of reinforcement in composite materials.
CO2	Know the various reinforcements used in composite materials.
CO3	Understand the manufacturing processes of metal matrix composites.
CO4	Understand the manufacturing processes of polymer matrix composites.
CO5	Analyze the strength of composite materials.

Course	Program Outcomes													PS	50	
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4
CO1	3	3	3	3	2	2	2	1	1	1	2	2	2	2	2	1
CO2	3	3	3	3	3	2	2	1	1	1	3	2	2	2	2	1
CO3	3	2	3	3	3	2	3	1	1	1	3	1	2	2	1	1
CO4	3	2	3	3	3	2	3	1	1	1	3	2	2	2	1	1
C05	3	2	2	3	3	2	3	1	1	1	2	2	2	2	1	1

3 0 0 3 Objectives Interpret the various types of wastes from which energy can be generated Develop knowledge on biomass pyrolysis process and its applications Develop knowledge on various types of biomass gasifiers and their operations Invent knowledge on biomass combustors and its applications on generating energy Summarize the principles of bio—energy systems and their features 9 JNIT – I INTRODUCTION TO EXTRACTION OF ENERGY FROM WASTE 9 Classification of waste as fuel – Agro based, Forest residue, Industrial waste – MSW – Conversion devices – Incinerators, gasifiers, digestors 9 JNIT – II BIOMASS PYROLYSIS 9
 Interpret the various types of wastes from which energy can be generated Develop knowledge on biomass pyrolysis process and its applications Develop knowledge on various types of biomass gasifiers and their operations Invent knowledge on biomass combustors and its applications on generating energy Summarize the principles of bio–energy systems and their features JNIT – I INTRODUCTION TO EXTRACTION OF ENERGY FROM WASTE 9 Classification of waste as fuel – Agro based, Forest residue, Industrial waste – MSW – Conversion devices – Incinerators, gasifiers, digestors
 Interpret the various types of wastes from which energy can be generated Develop knowledge on biomass pyrolysis process and its applications Develop knowledge on various types of biomass gasifiers and their operations Invent knowledge on biomass combustors and its applications on generating energy Summarize the principles of bio–energy systems and their features JNIT – I INTRODUCTION TO EXTRACTION OF ENERGY FROM WASTE 9 Classification of waste as fuel – Agro based, Forest residue, Industrial waste – MSW – Conversion devices – Incinerators, gasifiers, digestors
 Develop knowledge on biomass pyrolysis process and its applications Develop knowledge on various types of biomass gasifiers and their operations Invent knowledge on biomass combustors and its applications on generating energy Summarize the principles of bio–energy systems and their features JNIT – I INTRODUCTION TO EXTRACTION OF ENERGY FROM WASTE 9 Classification of waste as fuel – Agro based, Forest residue, Industrial waste – MSW – Conversion devices – Incinerators, gasifiers, digestors
 Develop knowledge on various types of biomass gasifiers and their operations Invent knowledge on biomass combustors and its applications on generating energy Summarize the principles of bio–energy systems and their features JNIT – I INTRODUCTION TO EXTRACTION OF ENERGY FROM WASTE 9 Classification of waste as fuel – Agro based, Forest residue, Industrial waste – MSW – Conversion devices – Incinerators, gasifiers, digestors
 Invent knowledge on biomass combustors and its applications on generating energy Summarize the principles of bio–energy systems and their features JNIT – I INTRODUCTION TO EXTRACTION OF ENERGY FROM WASTE 9 Classification of waste as fuel – Agro based, Forest residue, Industrial waste – MSW – Conversion devices – Incinerators, gasifiers, digestors
Summarize the principles of bio–energy systems and their features JNIT – I INTRODUCTION TO EXTRACTION OF ENERGY FROM WASTE 9 Classification of waste as fuel – Agro based, Forest residue, Industrial waste – MSW – Conversion devices – Incinerators, gasifiers, digestors 9
JNIT – I INTRODUCTION TO EXTRACTION OF ENERGY FROM WASTE 9 Classification of waste as fuel – Agro based, Forest residue, Industrial waste – MSW – Conversion devices – Incinerators, gasifiers, digestors 9
Classification of waste as fuel – Agro based, Forest residue, Industrial waste – MSW – Conversion devices – Incinerators, gasifiers, digestors
Classification of waste as fuel – Agro based, Forest residue, Industrial waste – MSW – Conversion devices – Incinerators, gasifiers, digestors
Classification of waste as fuel – Agro based, Forest residue, Industrial waste – MSW – Conversion devices – Incinerators, gasifiers, digestors
Conversion devices – Incinerators, gasifiers, digestors
JNIT – II BIOMASS PYROLYSIS 9
JNIT – II BIOMASS PYROLYSIS 9
Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods – Yields and application –
Manufacture of pyrolytic oils and gases, yields and applications.
JNIT – III BIOMASS GASIFICATION 9
Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers –
Design, construction and operation – Gasifier burner arrangement for thermal heating –
Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in
gasifier operation.
JNIT – IV BIOMASS COMBUSTION 9
Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors,
Types, inclined grate combustors, Fluidized bed combustors, Design, construction and
operation – Operation of all the above biomass combustors.
JNIT – V BIO ENERGY 9
Properties of biogas (Calorific value and composition), Biogas plant technology and status –
Bio energy system – Design and constructional features – Biomass resources and their
classification – Biomass conversion processes – Thermo chemical conversion – Direct
combustion – biomass gasification – pyrolysis and liquefaction – biochemical conversion –
anaerobic digestion – Types of biogas Plants – Applications – Alcohol production from
piomass – Bio diesel production – Urban waste to energy conversion – Biomass energy
programme in India.
Total Periods: 45

- 1. K. C. Khandelwal and S. S. Mahdi, 'Biogas Technology A Practical Hand Book Vol. I & II', Tata McGraw Hill Publishing Co. Ltd., 1983.
- C. Y. WereKo–Brobby and E. B. Hagan, 'Biomass Conversion and Technology', John Wiley & Sons, 1996.
- 3. D. S. Challal, 'Food, Feed and Fuel from Biomass', IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Ashok V. Desai, 'Non–Conventional Energy', Wiley Eastern Ltd., 1990.

Course Outcomes (CO)

CO1	Understand the various types of wastes from which energy can be generated
-----	---

- CO2 Gain knowledge on biomass pyrolysis process and its applications
- CO3 Develop knowledge on various types of biomass gasifiers and their operations
- CO4 Gain knowledge on biomass combustors and its applications on generating energy
- CO5 Understand the principles of bio–energy systems and their features

Course	Program Outcomes													PS	50	
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4
CO1	3	2	3	2	2	2	2	1	1	1	2	3	3	2	1	1
CO2	3	2	3	2	2	2	2	1	1	1	2	3	2	2	1	1
CO3	3	3	3	2	3	2	3	1	1	1	2	3	2	2	1	1
CO4	3	3	3	2	3	2	2	1	1	1	2	3	3	2	1	1
C05	3	3	3	2	3	2	2	1	1	1	2	3	2	2	1	1

AUDIT COURSES

AX1001	ENGLISH FOR RESEARCH PAPER WRITING	L	Т	Р	С
		2	0	0	0
Objectives					
• Teach how	to improve writing skills and level of readability.				
• Tell about v	what to write in each section.				
• Summarize	the skills needed when writing a title.				
• Infer the ski	ills needed when writing the conclusion.				
• Ensure the	quality of paper at very first-time submission.				
UNIT – I	INTRODUCTION TO RESEARCH PAPER WRITING				6
	Preparation, Word Order, breaking up long sentences, Structur	inσ	Para	orar	
•	s, Being Concise and Removing Redundancy, Avoiding A	•		• •	nd
Vagueness.	s, being concise and hemoting headmaney, holding ,		-9 an	., .	na
<u> </u>					
UNIT – II	PRESENTATION SKILLS				6
Clarifying Who	Did What, Highlighting Your Findings, Hedging and Criticizing	g, Pa	rap	hras	ing
	Sections of a Paper, Abstracts, Introduction.		-		-
UNIT – III	TITLE WRITING SKILLS				6
Key skills are no	eeded when writing a Title, key skills are needed when writing a	n Al	ostra	act, I	œy
skills are need	ed when writing an Introduction, skills needed when writing a	Re۱	/iew	of t	:he
Literature, Met	hods, Results, Discussion, Conclusions, The Final Check.				
UNIT – IV	RESULT WRITING SKILLS				6
Skills are neede	ed when writing the Methods, skills needed when writing the Re	esult	s, sł	cills a	are
needed when w	writing the Discussion and skills are needed when writing the Co	nclu	sion	IS.	
					6
UNIT – V	VERIFICATION SKILLS			:61.	6
the first-time s	, checking Plagiarism, how to ensure paper is as good as it co	uia	poss	yidi	be
	Total P	erio	ds:	3	0
L					
	89				

- 1. Adrian Wallwork, 'English for Writing Research Papers', Springer New York Dordrecht Heidelberg London, 2011.
- 2. R. Day, 'How to Write and Publish a Scientific Paper', Cambridge University Press, 2006.
- 3. R. Goldbort, 'Writing for Science', Yale University Press, 2006.
- 4. N. Highman, 'Handbook of Writing for the Mathematical Sciences', SIAM, Highman's book, 1998.

Course	Outcomes (CO)								
CO1	CO1 Understand that how to improve your writing skills and level of readability								
CO2	Learn about what to write in each section								
CO3	Understand the skills needed when writing a Title								
CO4	Understand the skills needed when writing the Conclusion								
CO5	CO5 Ensure the good quality of paper at very first–time submission								
	•								

AX1002	DISASTER MANAGEMENT	L	Т	Ρ	C
		2	0	0	0
Objectives					
• Summarize	basics of disaster				
•	critical understanding of key concepts in disaster risk	redu	ictio	n a	and
	an response.				
	saster risk reduction and humanitarian response policy and	pra	ctic	e fro	om
multiple per	•	+:	اسما	<u></u>	
	understanding of standards of humanitarian response and prac pes of disasters and conflict situations.	LICd	rei	evar	ice
	e strengths and weaknesses of disaster management approache	c			
	e strengths and weaknesses of disaster management approache	5.			
UNIT – I	INTRODUCTION				6
Disaster: Defin	ition, Factors and Significance; Difference between Hazard	and	d Di	sast	er;
	anmade Disasters: Difference, Nature, Types and Magnitude.				, ,
UNIT – II					6
	REPERCUSSIONS OF DISASTERS AND HAZARDS				6
	hage, Loss of Human and Animal Life, Destruction of Ecosy				
	hquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts d Avalanches, Man–made disaster: Nuclear Reactor Meltdo				
	licks And Spills, Outbreaks of Disease And Epidemics, War And (IIai
		20111	iiees		
UNIT – III	DISASTER PRONE AREAS IN INDIA				6
	nic Zones; Areas Prone to Floods and Droughts, Landslides A	nd A	vala	anch	es;
	o Cyclonic and Coastal Hazards with Special Reference to T				
Disaster Diseas	es and Epidemics				
UNIT – IV	DISASTER PREPAREDNESS AND MANAGEMENT				6
Preparedness:	Monitoring of Phenomena Triggering a Disaster or Hazard; Eva	luati	on o	of Ri	isk:
Application of	Remote Sensing, Data from Meteorological and Other Ag	genc	ies,	Me	dia
Reports: Gover	nmental and Community Preparedness.				
UNIT – V	RISK ASSESSMENT				6
	Concept and Elements, Disaster Risk Reduction, Global and Na				
	Techniques of Risk Assessment, Global Co–Operation in Risk A	sses	sme	ent a	and
Warning, Peopl	e's Participation in Risk Assessment. Strategies for Survival				
	T-L-I N	or: -	des	-	0
	Total P	erio	ds:	3	0
	01				
	91				

- 1. S. L. Goel, 'Disaster Administration and Management Text and Case Studies', Deep & Deep Publication, Pvt. Ltd., New Delhi, 2009.
- 2. Nishitha Rai, A. K. Singh, 'Disaster Management in India: Perspectives, issues and strategies', New Royal book Company, 2007.
- 3. Sahni, Pardeep, et. Al., 'Disaster Mitigation Experiences and Reflections', Prentice Hall of India, New Delhi, 2001.

Course Outcomes (CO)

CO1	Ability to summarize basics of disaster
001	

- CO2 Ability to explain critical understanding of key concepts in disaster risk reduction and humanitarian response
- CO3 Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- CO4 Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- CO5 Ability to develop the strengths and weaknesses of disaster management approaches

Course					Prog	ram	Outo	come	S						PSO		
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4	5
CO1	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CO2	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CO3	3	3	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CO4	3	3	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1
C05	3	3	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1

AX10	03 SANSKRIT FOR TECHNICAL KNOWLEDGE	<u> </u>	T	Ρ	(
		2	0	0	(
Ohiostiu					
Objectiv					
	t a working knowledge in illustrious Sanskrit, the scientific languag	e in the	e wo	ria	
	ling of Sanskrit to improve brain functioning	0 ath		منام	- +-
	ing of Sanskrit to develop the logic in mathematics, science ncing the memory power			Joje	
	engineering scholars equipped with Sanskrit will be able to	evolor	h ל	≏ hi	ıσ
	ledge from ancient literature	слрюг			8
UNIT – I	ALPHABETS				(
Alphabe	ts in Sanskrit.				1
UNIT – I	TENSES AND SENTENCES				(
Past / Pr	esent / Future Tense – Simple Sentences.				
UNIT – I	I ORDER AND ROOTS				
Order –	ntroduction of roots.				
UNIT – I	/ SANSKRIT LITERATURE				(
Technica	l information about Sanskrit Literature.				
UNIT – \	TECHNICAL CONCEPTS OF ENGINEERING				(
Technica	l concepts of Engineering-Electrical, Mechanical, Architecture, Mat	themat	ics.		
	Tota	al Perio	ods:	3	0
D (
	ce Books:				
	yaspustakam" – Dr. Vishwas, Samskrita-Bharti Publication, New De ch Yourself Sanskrit" Prathama Deeksha-Vempati Kutumbshastri,		iva (and	kri
	hanam, New Delhi Publication	Nasiili	iya S	alls	KI
	a's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd.,		olhi	201	7
<u>.</u>			ciiii,	201	/.
Course (Outcomes (CO)				
	Jnderstanding basic Sanskrit language.				
	Write sentences.				
	Know the order and roots of Sanskrit.				
603					
	(now about technical information about Sanskrit literature				
CO4	Know about technical information about Sanskrit literature. Jnderstand the technical concepts of Engineering.				

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119 (An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

Course					Prog	gram	Outo	ome	S				PSO							
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4	5			
CO1	1	1	1	1	1	1	1	1	1	3	1	3	1	1	1	1	1			
CO2	1	1	1	1	1	1	1	1	1	3	1	3	1	1	1	1	1			
CO3	1	1	1	1	1	1	1	1	1	3	1	3	1	1	1	1	1			
CO4	1	1	1	1	1	1	1	1	1	3	1	3	1	1	1	1	1			
C05	1	1	1	1	1	1	1	1	1	3	1	3	1	1	1	1	1			

Г

AX1004	VALUE EDUCATION	L	Т	Ρ	С
		2	0	0	0
Objectives					
	value of education and self-development				
•	values in students				
• Let the stude	nts know about the importance of character				
UNIT – I					6
	If–development–Social values and individual attitudes. Work nanism. Moral and non–moral valuation. Standards and pri				
UNIT – II					6
Concentration	cultivation of values. Sense of duty. Devotion, Self–relianc Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, I e for nature, Discipline.				
UNIT – III					6
Personality ar	d Behavior Development–Soul and Scientific attitude. Pos	itive	e Th	inki	ng.
Integrity and	discipline. Punctuality, Love and Kindness. Avoid fault Thinki	ng.	Fre	e fr	om
anger, Dignity	of labour. Universal brother hood and religious tolerance. The	rue	frie	ndsh	nip.
	suffering, love for truth. Aware of self-destructive habits. A	ssoc	ciatio	on a	nd
Cooperation.	ooing best for saving nature.				
UNIT – IV					
					6
	Competence - Holy books vs Blind faith Self-management an	d aa	bod	hoa	6 th
	Competence – Holy books vs Blind faith. Self–management an ocarnation. Equality, Nonviolence, Humility, Role of Women, Al	-			th.
Science of reir	ncarnation. Equality, Nonviolence, Humility, Role of Women. A	-			th.
Science of reir		-			th.
Science of reir	ncarnation. Equality, Nonviolence, Humility, Role of Women. A	ll re	ligio		th. Ind
Science of reir same message	ncarnation. Equality, Nonviolence, Humility, Role of Women. Al Mind your Mind, Self–control. Honesty, Studying effectively. Total P e	ll re	ligio	ns a	th. Ind
Science of reir same message Reference Boc	carnation. Equality, Nonviolence, Humility, Role of Women. Al Mind your Mind, Self–control. Honesty, Studying effectively. Total Personal Reserved Statement Proceedings (Statement Personal Per	ll re	ligio ds:	ns a	th. ind 0
Science of reir same message Reference Boo 1. Chakrobort	ncarnation. Equality, Nonviolence, Humility, Role of Women. Al Mind your Mind, Self–control. Honesty, Studying effectively. Total P e	ll re	ligio ds:	ns a	th. ind 0
Science of reir same message Reference Boo 1. Chakrobort	And Your Mind, Self-control. Honesty, Studying effectively. Total Performance of Women. Algorithm of the second state of Women. Algorithm of the second state of the	ll re	ligio ds:	ns a	th. ind 0
Science of reir same message Reference Boo 1. Chakrobort University I Course Outcor	And Your Mind, Self-control. Honesty, Studying effectively. Total Performance of Women. Algorithm of the second state of Women. Algorithm of the second state of the	ll re	ligio ds:	ns a	th. ind 0
Science of reir same message Reference Boo 1. Chakrobort University I Course Outcor CO1 Knowle	And Your Mind, Self-control. Honesty, Studying effectively. Total Performance of Women. Algorithm of the second s	ll re	ligio ds:	ns a	th. ind 0
Science of reir same message Reference Boo 1. Chakrobort University I Course Outcor CO1 Knowld CO2 Learn t	And Your Mind, Self-control. Honesty, Studying effectively. Total Performance of the second	ll re	ligio ds:	ns a	th. ind 0

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119 (An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

Course						PSO											
Outcomes	а	b	С	d	е	f	g	h	i	j	k	-	1	2	3	4	5
CO1	1	1	1	1	1	1	1	1	2	3	1	1	1	1	1	1	1
CO2	1	1	1	1	1	1	1	1	2	3	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	1	2	3	1	1	1	1	1	1	1
CO4	1	1	1	1	1	1	1	1	2	3	1	1	1	1	1	1	1

AX1005	CONSTITUTION OF INDIA	L	Т	Ρ	C
		2	0	0	0
Objectives					
	the premises informing the twin themes of liberty and freedo	om 1	rom	ac	ivi
rights persp			+ - 11 -		- 1-1
 To address constitution 	s the growth of Indian opinion regarding modern Indiar	n in	telle	ectua	ais
	-	nati	onk		lin
	titlement to civil and economic rights as well as the emergence ars of Indian nationalism.	nau	0111	1000	
	the role of socialism in India after the commencement of	the	Bo	lshe	vik
	in 1917and its impact on the initial drafting of the Indian Constil			ISITC	VIN
Revolution	in 1917 and its impact on the initial aratiling of the initian constit	utic			
UNIT – I	HISTORY OF MAKING OF THE INDIAN CONSTITUTION				5
History, Draftin	g Committee, (Composition & Working)				
UNIT – II	PHILOSOPHY OF THE INDIAN CONSTITUTION				5
Preamble, Salie	ent Features				
UNIT – III	CONTOURS OF CONSTITUTIONAL RIGHTS AND DUTIES				5
Fundamental R	lights, Right to Equality, Right to Freedom, Right against Exploit	tatic	n, R	ight	to
Freedom of R	eligion, Cultural and Educational Rights, Right to Constitutio	nal	Rer	nedi	es,
Directive Princi	ples of State Policy, Fundamental Duties.				
UNIT – IV	ORGANS OF GOVERNANCE				5
Parliament, C	omposition, Qualifications and Disqualifications, Powers a	nd	Fur	ictio	ns,
Executive, Pres	ident, Governor, Council of Ministers, Judiciary, Appointment a	and	Trar	sfer	· of
Judges, Qualific	cations, Powers and Functions.				
UNIT – V	LOCAL ADMINISTRATION				5
	nistration head: Role and Importance, Municipalities: Introducti	-			
	Representative, CEO, Municipal Corporation. Panchayati raj: Int				
•	Elected officials and their roles, CEO Zila Panchayat: Position				
0	tional Hierarchy (Different departments), Village level: Role	of E	lect	ed a	nd
Appointed offic	cials, Importance of grass root democracy.				
					-
UNIT – VI					5
	nission: Role and Functioning. Chief Election Commissioner		d E	lect	ion
Commissioners	Institute and Bodies for the welfare of SC/ST/OBC and wome	n.			
	Total P	erin	٩ċ٠	Z	0

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- Dr. S. N. Busi, Dr. B. R. Ambedkar 'Framing of Indian Constitution', 1st Edition, 2015.
 M. P. Jain, Indian Constitution Law, 7th Edition, Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015

Course	Outcomes (CO)
CO1	Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics
CO2	Address the growth of Indian opinion regarding modern Indian intellectuals' constitutional
CO3	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India
CO4	The eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
CO5	Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru.
CO6	Discuss the passage of the Hindu Code Bill of 1956.

Course					Prog	ram	Outc	ome	5						PSO		
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4	5
CO1	1	1	1	1	1	1	1	1	3	2	1	1	1	1	1	1	1
CO2	1	1	1	1	1	1	1	1	3	2	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	1	3	2	1	1	1	1	1	1	1
CO4	1	1	1	1	1	1	1	1	3	2	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1	3	2	1	1	1	1	1	1	1
C06	1	1	1	1	1	1	1	1	3	2	1	1	1	1	1	1	1

AX1006	PEDAGOGY STUDIES	L	Т	Ρ	С
		2	0	0	0
Objectives					
	ng evidence on their view topic to inform programme design an	d pc	olicy		
 Making under 	taken by the DFID, other agencies and researchers.				
Identify critics	al evidence gaps to guide the development				
UNIT – I	INTRODUCTION AND METHODOLOGY				6
_	nale, Policy background, Conceptual framework and terminolog	T\/	Tho	orio	_
-	culum, Teacher education – Conceptual framework, Researce		lues	LIOII	, –
Overview of me	ethodology and Searching.				
UNIT – II	THEMATIC OVERVIEW				6
Pedagogical pr	actices are being used by teachers in formal and informal	cla	ssro	oms	in
	ntries – Curriculum, Teacher education.				
0.000	,,				
UNIT – III	EVIDENCE ON THE EFFECTIVENESS OF PEDAGOGICAL PRACTIC	CES			6
Methodology f	or the in-depth stage: quality assessment of included stud	ies -	- Ho	ow (can
teacher educa	tion (curriculum and practicum) and the school curriculum	and	d gu	uidar	າce
materials best	support effective pedagogy? – Theory of change – Strength an	d na	ture	e of	the
body of evider	nce for effective pedagogical practices – Pedagogic theory a	nd p	beda	gog	ical
•	eachers' attitudes and beliefs and Pedagogic strategies.	•			
••					
UNIT – IV	PROFESSIONAL DEVELOPMENT				6
Professional de	velopment: alignment with classroom practices and follow up	sup	port	– P	eer
support – Supp	ort from the head teacher and the community – Curriculum an	d as	sess	mer	ıt –
Barriers to lear	ning: limited resources and large class sizes.				
UNIT – V	RESEARCH GAPS AND FUTURE DIRECTIONS				6
Research desig	n – Contexts – Pedagogy – Teacher education – Curriculum an	d as	sess	mer	t –
Dissemination	and research impact.				
				<u> </u>	
	Total P	erio	ds:	3	0

- 1. J. Ackers, F. Hardman, 'Classroom interaction in Kenyan primary schools', Compare, Vol. 31, No. 2, Page: 245–261, 2001.
- 2. M. Agrawal, 'Curricular reform in schools: The importance of evaluation', Journal of Curriculum Studies, Vol. 36, No. 3, Page: 361–379, 2004.
- 3. K. Akyeampong, 'Teacher training in Ghana–does it count? Multi–site teacher education research project' (MUSTER) Country report 1, London, 2003.
- 4. K. Akyeampong, K. Lussier, J. Pryor and J. Westbrook, 'Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count?' International Journal Educational Development, Vol. 33, No. 3, Page: 272–282, 2013.
- 5. R. J. Alexander 'Culture and pedagogy: International comparisons in primary education', Oxford and Boston: Blackwell, 2001.
- 6. M. Chavan, 'Read India: Amass scale, rapid, 'learning to read' campaign', 2003.
- 7. www.pratham.org/images/resource%20working%20paper%202.pdf.

idents will be able to understand what pedagogical practices are being used by acher's formal classrooms in developing countries. Idents will be able to understand what pedagogical practices are being used by acher's informal classrooms in developing countries. Idents will be able to understand the evidence on the effectiveness of these
idents will be able to understand what pedagogical practices are being used by acher's informal classrooms in developing countries.
acher's informal classrooms in developing countries.
idents will be able to understand the evidence on the effectiveness of these
dagogical practices, in what conditions, and with what population of learners.
idents will be able to understand how a teacher can teach the education
irriculum and practicum).
e school curriculum and guidance materials best support effective pedagogy is
epared by a teacher.
e

Course					Prog	ram (Outc	omes	5				PSO							
Outcomes	а	b	С	d	е	f	g	h	i	j	k	Ι	1	2	3	4	5			
CO1	1	1	1	1	1	1	1	1	2	2	1	2	1	1	1	1	1			
CO2	1	1	1	1	1	1	1	1	2	2	1	2	1	1	1	1	1			
CO3	1	1	1	1	1	1	1	1	2	2	1	2	1	1	1	1	1			
CO4	1	1	1	1	1	1	1	1	2	2	1	2	1	1	1	1	1			
CO5	1	1	1	1	1	1	1	1	2	2	1	2	1	1	1	1	1			

AX1007				51	RFS	S M/		GEM	FNT	RY Y	064					T	D	С
AALOOT							111/11					•			2			0
																<u> </u>	-	•
Objectives																		
• To achiev	e ov	erall	healt	th of	body	and	minc	1										
To overco	ome	stres	S															
	(=:			<u> </u>	(•												1	10
Definitions o	t Eig	ht pa	rts o	t yog	a. (As	shtan	ga)											
UNIT – II																	1	10
Yam and Ni	vam	- D	o`s a	nd D) on't	's in	life	— i)	Ahing	sa. s	atva	ast	ieva.	brar	nhac	harva		-
aparigraha, i											•		,,					
																	-	
UNIT – III																		10
Asan and Pra	•			•	•	•					for	mind	& bo	ody –	- Reg	ulariz	zati	on
of breathing	tech	niqu	es an	d its	ettec	ts – T	Types	s ot p	ranav	vam								
							7.	- 1-	- arra	,								
										,			.		• • •		- 26	
													То	tal P	eriod	ls:	30	D
Reference B	ooks	:								,			То	tal P	eriod	ls:	30	0
Reference Bo			iroup) Tari	ning-	-Part	—l', Ja				i Yog	a bh						0
	anas	for G	•		-		-	anarc	lan Sv	wam	-		/asi N	land	al, Na	agpui	ſ.	
1. 'Yogic Asa	anas 1 or	for G conq	uerin	ng th	ie Int	terna	-	anarc	lan Sv	wam	-		/asi N	land	al, Na	agpui	ſ.	
 Yogic Asa Rajayoga (Publicati 	anas i or on D	for G conc epar	juerii tmer	ng th	ie Int	terna	-	anarc	lan Sv	wam	-		/asi N	land	al, Na	agpui	ſ.	
 'Yogic Asa 'Rajayoga (Publicati 	anas or on D	for G cond epar s (CO	juerin tmer	ng th nt), Ko	ie Into	terna a.	l Na	anarc ture,	lan Sy by S	wam Swan	ni Vi	veka	yasi M nanda	land	al, Na	agpui	ſ.	
 'Yogic Asa 'Rajayoga (Publicati Course Outco CO1 Stud 	anas or on D ome ents	for G cond epar s (CO will	juerin tmer) be ab	ng th nt), Ko ole to	ie Into	terna a.	l Na	anarc	lan Sy by S	wam Swan	ni Vi	veka	yasi M nanda	land	al, Na	agpui	ſ.	
1. 'Yogic Asa 2. 'Rajayoga (Publicati COurse Outco CO1 Stud CO2 Impr	anas on D ome ents ove	for G cond epar s (CC will l effici	juerin tmer) be ab ency	ng th nt), Ko ole to	ie Info olkat deve	terna a. elop ł	l Na nealt	anarc ture,	lan S by S	wam Swan	ni Vi	veka y boc	yasi M nanda	land	al, Na	agpui	ſ.	
1. 'Yogic Asa 2. 'Rajayoga (Publicati COurse Outco CO1 Stud CO2 Impr	anas on D ome ents ove	for G cond epar s (CC will l effici	juerin tmer) be ab ency	ng th nt), Ko ole to	ie Info olkat deve	terna a. elop ł	l Na nealt	anarc ture,	lan S by S	wam Swan	ni Vi	veka y boc	yasi M nanda	land	al, Na	agpui	ſ.	
1. 'Yogic Asa 2. 'Rajayoga (Publicati COurse Outco CO1 Stud CO2 Impr	anas on D ome ents ove	for G cond epar s (CC will l effici	juerin tmer) be ab ency	ng th nt), Ko ole to ents	deve	terna a. elop l	nealt	anarc ture,	lan S by S ind ir	wam Swan	ni Vi	veka y boc	yasi M nanda	land	al, Na	agpui	ſ.	
 'Yogic Asa 'Rajayoga (Publicati Course Outco CO1 Stud CO2 Impr CO3 Heal 	anas on D ome ents ove	for G cond epar s (CC will l effici	juerin tmer) be ab ency	ng th nt), Ko ole to ents	deve	terna a. elop l	nealt	anarc ture, hy mi	lan S by S ind ir	wam Swan	ni Vi	veka y boc	yasi M nanda	land	al, Na Ivaita	agpui	r. Iran	
1. 'Yogic Asa 2. 'Rajayoga (Publicati COurse Outco CO1 Stud CO2 Impr CO3 Heal CO3 Heal	on D ome ents ove thy r	for G cond epar s (CO will effici nind	juerin tmer)) be ab ency stude	ng th nt), Ko ole to ents	deve helps	terna a. elop l s in in	nealt nprov	anarc ture, hy m ving s	lan Sy by S	wam Swam	alth	veka y boc so.	yasi M nanda ly.	land I, Ac	al, Na Ivaita	agpui Ash	r. Iran	ma
 'Yogic Asa 'Rajayoga (Publicati Course Outco CO1 Stud CO2 Impr CO3 Heal Course Outcomes 	on D ome ents ove thy r	for G cond epar s (CC will effici mind b	juerin tmer)) be ab ency stude	ng th nt), Ko ole to ents d	deve helps Prog	terna a. elop l s in in ram (f	nealt nprov	anarc ture, hy mi ving s omes h	lan S by S ind ir	wam Swan heal	ealth th al	y boc so.	/asi M nanda ly. 1	land i, Ac	al, Na Ivaita PSO 3	agpui Ash	r. Iran	ma

AX1	008	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	L	т	Ρ	С
			2	0	0	0
Objecti	ves					
• To lea	rn to ac	hieve the highest goal happily				
• To be	come a	person with stable mind, pleasing personality and determinati	on			
• To aw	aken wi	sdom in students				
UNIT –	I					10
Neetisa	takam	 holistic development of personality – Verses–19,20,21 	,22	(wis	sdon	n) —
Verses-	-29,31,3	2 (pride & heroism) – Verses–26,28,63,65 (virtue) – Verses–5	52,5	3,59	(do	nt's)
– Verse	s–71,73	,75,78 (do's)				
UNIT –	11					10
Approa	ch to da	y-to-day work and duties - Shrimad Bhagwad Geeta: Chapte	er 2	– Ve	erses	s 41,
47,48 –	Chapte	r 3 – Verses 13, 21, 27, 35 Chapter 6–Verses 5,13,1				
UNIT –						10
Stateme	ents of	basic knowledge – Shrimad Bhagwad Geeta: Chapter2 – Ve	erse	s 56	6, 62	, 68
Chapter	r 12 − V	'erses 13, 14, 15, 16,17, 18 – Personality of role model – Sh	nrim	ad E	3hag	wad
Geeta –	- Chapte	er2 – Verses 17, Chapter 3 – Verses 36,37,42 – Chapter 4 – V	Vers	es 1	.8, 3	8,39
Chapter	r18 – Ve	rses 37,38,63				
		Total P	erio	ds:	3	80
Referer						
-		. Rashtriya Sanskrit Sansthanam, 'Bhartrihari's Three Satakar	п', I	Niti-	-srin	gar–
	•••	ew Delhi, 2010.	_			
		upananda, 'Srimad Bhagavad Gita', Advaita Ashram, Publicat	ion	Dep	artm	ent,
Kolk	ata, 201	.6.				
Course						
CO1		ts will be able to study the Shrimad–Bhagwad–Geeta tha		/ill	nelp	the
		in developing his personality and achieve the highest goal in				
CO2	-	rson who has studied Geeta will lead the nation and mankin	nd t	o pe	eace	and
602	prospe	•	of a	امى ب	+.	
CO3	Study C	f Neet is hatakam will help in developing versatile personality	OF S	ιμαε	ents.	

St. JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI - 600119 (An Autonomous Institution, Affiliated to Anna University, Chennai and approved by AICTE, New Delhi)

Course					PSO												
Outcomes	а	b	С	d	е	f	g	h	i	j	k	-	1	2	3	4	5
CO1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1
CO2	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1